Improving Computer-aided Detection for Digital Breast Tomosynthesis by Incorporating Temporal Change.

IF 8.1 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yinhao Ren, Zisheng Liang, Jun Ge, Xiaoming Xu, Jonathan Go, Derek L Nguyen, Joseph Y Lo, Lars J Grimm
{"title":"Improving Computer-aided Detection for Digital Breast Tomosynthesis by Incorporating Temporal Change.","authors":"Yinhao Ren, Zisheng Liang, Jun Ge, Xiaoming Xu, Jonathan Go, Derek L Nguyen, Joseph Y Lo, Lars J Grimm","doi":"10.1148/ryai.230391","DOIUrl":null,"url":null,"abstract":"<p><p><i>\"Just Accepted\" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To develop a deep learning algorithm that uses temporal information to improve the performance of a previously published framework of cancer lesion detection for digital breast tomosynthesis (DBT). Materials and Methods This retrospective study analyzed the current and the 1-year prior Hologic DBT screening examinations from 8 different institutions between 2016 to 2020. The dataset contained 973 cancer and 7123 noncancer cases. The front-end of this algorithm was an existing deep learning framework that performed singleview lesion detection followed by ipsilateral view matching. For this study, PriorNet was implemented as a cascaded deep learning module that used the additional growth information to refine the final probability of malignancy. Data from seven of the eight sites were used for training and validation, while the eighth site was reserved for external testing. Model performance was evaluated using localization receiver operating characteristic (ROC) curves. Results On the validation set, PriorNet showed an area under the ROC curve (AUC) of 0.931 (95% CI 0.930- 0.931), which outperformed both baseline models using single-view detection (AUC, 0.892 (95% CI 0.891-0.892), <i>P</i> < .001) and ipsilateral matching (AUC, 0.915 (95% CI 0.914-0.915), <i>P</i> < .001). On the external test set, PriorNet achieved an AUC of 0.896 (95% CI 0.885-0.896), outperforming both baselines (AUCs, 0.846 (95% CI 0.846-0.847, <i>P</i> < .001) and 0.865 (95% CI 0.865-0.866) <i>P</i> < .001, respectively). In the high sensitivity range of 0.9 to 1.0, the partial AUC of PriorNet was significantly higher (<i>P</i> < .001) relative to both baselines. Conclusion PriorNet using temporal information further improved the breast cancer detection performance of an existing DBT cancer detection framework. ©RSNA, 2024.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.230391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop a deep learning algorithm that uses temporal information to improve the performance of a previously published framework of cancer lesion detection for digital breast tomosynthesis (DBT). Materials and Methods This retrospective study analyzed the current and the 1-year prior Hologic DBT screening examinations from 8 different institutions between 2016 to 2020. The dataset contained 973 cancer and 7123 noncancer cases. The front-end of this algorithm was an existing deep learning framework that performed singleview lesion detection followed by ipsilateral view matching. For this study, PriorNet was implemented as a cascaded deep learning module that used the additional growth information to refine the final probability of malignancy. Data from seven of the eight sites were used for training and validation, while the eighth site was reserved for external testing. Model performance was evaluated using localization receiver operating characteristic (ROC) curves. Results On the validation set, PriorNet showed an area under the ROC curve (AUC) of 0.931 (95% CI 0.930- 0.931), which outperformed both baseline models using single-view detection (AUC, 0.892 (95% CI 0.891-0.892), P < .001) and ipsilateral matching (AUC, 0.915 (95% CI 0.914-0.915), P < .001). On the external test set, PriorNet achieved an AUC of 0.896 (95% CI 0.885-0.896), outperforming both baselines (AUCs, 0.846 (95% CI 0.846-0.847, P < .001) and 0.865 (95% CI 0.865-0.866) P < .001, respectively). In the high sensitivity range of 0.9 to 1.0, the partial AUC of PriorNet was significantly higher (P < .001) relative to both baselines. Conclusion PriorNet using temporal information further improved the breast cancer detection performance of an existing DBT cancer detection framework. ©RSNA, 2024.

通过纳入时间变化改进数字乳腺断层合成的计算机辅助检测。
"刚刚接受 "的论文经过同行评审,已被接受在《放射学》上发表:人工智能》上发表。这篇文章在以最终版本发表之前,还将经过校对、排版和校对审核。请注意,在制作最终校对稿的过程中,可能会发现一些可能影响内容的错误。目的 开发一种利用时间信息的深度学习算法,以提高以前发表的数字乳腺断层合成(DBT)癌症病灶检测框架的性能。材料与方法 这项回顾性研究分析了 8 家不同机构在 2016 年至 2020 年期间进行的当前和之前 1 年的 Hologic DBT 筛查检查。数据集包含 973 例癌症病例和 7123 例非癌症病例。该算法的前端是一个现有的深度学习框架,可进行单视图病变检测,然后进行同侧视图匹配。在本研究中,PriorNet 是作为级联深度学习模块实施的,它使用额外的生长信息来完善恶性肿瘤的最终概率。八个部位中七个部位的数据用于训练和验证,而第八个部位则用于外部测试。使用定位接收器操作特征曲线(ROC)对模型性能进行评估。结果 在验证集上,PriorNet 的 ROC 曲线下面积(AUC)为 0.931(95% CI 0.930-0.931),优于使用单视角检测(AUC,0.892(95% CI 0.891-0.892),P < .001)和同侧匹配(AUC,0.915(95% CI 0.914-0.915),P < .001)的两个基线模型。在外部测试集上,PriorNet 的 AUC 为 0.896(95% CI 0.885-0.896),优于两个基线(AUC 分别为 0.846(95% CI 0.846-0.847,P < .001)和 0.865(95% CI 0.865-0.866),P < .001)。在 0.9 至 1.0 的高灵敏度范围内,PriorNet 的部分 AUC 明显高于两种基线(P < .001)。结论 使用时间信息的 PriorNet 进一步提高了现有 DBT 癌症检测框架的乳腺癌检测性能。©RSNA, 2024.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.20
自引率
1.00%
发文量
0
期刊介绍: Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信