Podosome Nucleation Is Facilitated by Multivalent Interactions between Syk and ITAM-containing Membrane Complexes.

IF 3.6 3区 医学 Q2 IMMUNOLOGY
Sina Ghasempour, Aleixo M Muise, Spencer A Freeman
{"title":"Podosome Nucleation Is Facilitated by Multivalent Interactions between Syk and ITAM-containing Membrane Complexes.","authors":"Sina Ghasempour, Aleixo M Muise, Spencer A Freeman","doi":"10.4049/jimmunol.2400031","DOIUrl":null,"url":null,"abstract":"<p><p>Immune cells survey their microenvironment by forming dynamic cellular protrusions that enable chemotaxis, contacts with other cells, and phagocytosis. Podosomes are a unique type of protrusion structured by an adhesive ring of active integrins that surround an F-actin-rich core harboring degradative proteases. Although the features of podosomes, once-established, have been well defined, the steps that lead to podosome formation remain poorly understood by comparison. In this study, we report that spleen tyrosine kinase (Syk) is a critical regulator of podosome formation. Deletion of Syk or targeting its kinase activity eliminated the ability for murine macrophages to form podosomes. We found that the kinase activity of Syk was important for the phosphorylation of its substrates, HS1 and Pyk2, both of which regulate podosome formation. Additionally, before podosomes form, we report that the tandem Src homology 2 domains of Syk afforded multivalent clustering of ITAM-containing adaptors that associated with integrins to structure platforms that initiate podosomes. We therefore propose that Syk has a dual role in regulating podosomes: first, by facilitating the assembly of multivalent signaling hubs that nucleate their formation and second, by sustaining tyrosine kinase activity of the podosomes once they form against their substrates. In cells expressing recently identified gain-of-function variants of SYK, podosomes were dysregulated. These results implicate SYK in the (patho)physiological functions of podosomes in macrophages.</p>","PeriodicalId":16045,"journal":{"name":"Journal of immunology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11404668/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4049/jimmunol.2400031","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Immune cells survey their microenvironment by forming dynamic cellular protrusions that enable chemotaxis, contacts with other cells, and phagocytosis. Podosomes are a unique type of protrusion structured by an adhesive ring of active integrins that surround an F-actin-rich core harboring degradative proteases. Although the features of podosomes, once-established, have been well defined, the steps that lead to podosome formation remain poorly understood by comparison. In this study, we report that spleen tyrosine kinase (Syk) is a critical regulator of podosome formation. Deletion of Syk or targeting its kinase activity eliminated the ability for murine macrophages to form podosomes. We found that the kinase activity of Syk was important for the phosphorylation of its substrates, HS1 and Pyk2, both of which regulate podosome formation. Additionally, before podosomes form, we report that the tandem Src homology 2 domains of Syk afforded multivalent clustering of ITAM-containing adaptors that associated with integrins to structure platforms that initiate podosomes. We therefore propose that Syk has a dual role in regulating podosomes: first, by facilitating the assembly of multivalent signaling hubs that nucleate their formation and second, by sustaining tyrosine kinase activity of the podosomes once they form against their substrates. In cells expressing recently identified gain-of-function variants of SYK, podosomes were dysregulated. These results implicate SYK in the (patho)physiological functions of podosomes in macrophages.

Syk与含ITAM的膜复合物之间的多价相互作用促进了荚膜体的形成
免疫细胞通过形成动态细胞突起来观察微环境,从而实现趋化、与其他细胞接触和吞噬。荚膜是一种独特的突起,由活性整合素组成的粘附环环绕着富含降解蛋白酶的 F-肌动蛋白核心。虽然荚膜体一旦形成,其特征就已明确,但相比之下,人们对荚膜体形成的步骤仍然知之甚少。在这项研究中,我们发现脾脏酪氨酸激酶(Syk)是荚膜形成的关键调节因子。缺失Syk或以其激酶活性为靶点,可消除小鼠巨噬细胞形成荚膜的能力。我们发现,Syk的激酶活性对其底物HS1和Pyk2的磷酸化非常重要,而HS1和Pyk2都能调节荚膜的形成。此外,在荚膜体形成之前,我们报告称 Syk 的串联 Src 同源 2 结构域可使含 ITAM 的适配体多价聚类,这些适配体与整合素相关联,形成启动荚膜体的结构平台。因此,我们认为 Syk 在调控荚膜中具有双重作用:首先,它能促进多价信号枢纽的组装,使荚膜形成;其次,一旦荚膜形成,它能维持荚膜的酪氨酸激酶活性,以对抗其底物。在表达最近鉴定出的 SYK 功能增益变体的细胞中,荚膜被失调。这些结果表明,SYK 与巨噬细胞中荚膜的(病理)生理功能有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of immunology
Journal of immunology 医学-免疫学
CiteScore
8.20
自引率
2.30%
发文量
495
审稿时长
1 months
期刊介绍: The JI publishes novel, peer-reviewed findings in all areas of experimental immunology, including innate and adaptive immunity, inflammation, host defense, clinical immunology, autoimmunity and more. Special sections include Cutting Edge articles, Brief Reviews and Pillars of Immunology. The JI is published by The American Association of Immunologists (AAI)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信