Effect of dynamic loading on calcium signaling in In-Situ chondrocytes

IF 2.4 3区 医学 Q3 BIOPHYSICS
{"title":"Effect of dynamic loading on calcium signaling in In-Situ chondrocytes","authors":"","doi":"10.1016/j.jbiomech.2024.112265","DOIUrl":null,"url":null,"abstract":"<div><p>Chondrocytes respond to mechanical stimuli by increasing their intracellular calcium concentration. The response depends on the cellular environment. Previous studies have investigated chondrocytes under slow strain rates or cells embedded in hydrogels, but the response of chondrocytes in their native environment under physiologically relevant cyclic loads and dynamic hydrostatic pressure has not been studied. This study investigated the calcium signaling response of in-situ chondrocytes under physiological cyclic compressive loads and hydrostatic pressure with varying frequency and load rates. Bovine cartilage explants were stained with a fluorescent calcium indicator dye and subjected to physiologically relevant cyclic loads using a custom-built loading device secured on a confocal/multiphoton microscope. Calcium fluorescence intensities of the cells were tracked and analyzed. Loading groups were compared using one-way ANOVA followed by a post-hoc test with Tukey correction (α = 0.05). The percentage of cells signaling increased in all compressive loading conditions compared to the no-load baseline. The percentage of cells responding under 1 Hz load was significantly greater than the slow ramp and 0.1 Hz group (p &lt; 0.05). The number of compression cycles had no effect on the calcium signaling response (p &gt; 0.05). The width and time between consecutive peaks were not different between different loading conditions (p &gt; 0.05). Calcium signaling of in-situ chondrocytes did not increase under dynamic hydrostatic pressure of magnitudes up to 0.2 MPa at frequencies of 0.5 Hz and 0.05 Hz (p &gt; 0.05). In conclusion, in-situ chondrocytes respond to physiological compressive loads in a strain rate-dependent manner with an increased number of responsive cells and unaltered temporal characteristics.</p></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021929024003439/pdfft?md5=c4134b7692248d6441f36dec594335a2&pid=1-s2.0-S0021929024003439-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929024003439","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Chondrocytes respond to mechanical stimuli by increasing their intracellular calcium concentration. The response depends on the cellular environment. Previous studies have investigated chondrocytes under slow strain rates or cells embedded in hydrogels, but the response of chondrocytes in their native environment under physiologically relevant cyclic loads and dynamic hydrostatic pressure has not been studied. This study investigated the calcium signaling response of in-situ chondrocytes under physiological cyclic compressive loads and hydrostatic pressure with varying frequency and load rates. Bovine cartilage explants were stained with a fluorescent calcium indicator dye and subjected to physiologically relevant cyclic loads using a custom-built loading device secured on a confocal/multiphoton microscope. Calcium fluorescence intensities of the cells were tracked and analyzed. Loading groups were compared using one-way ANOVA followed by a post-hoc test with Tukey correction (α = 0.05). The percentage of cells signaling increased in all compressive loading conditions compared to the no-load baseline. The percentage of cells responding under 1 Hz load was significantly greater than the slow ramp and 0.1 Hz group (p < 0.05). The number of compression cycles had no effect on the calcium signaling response (p > 0.05). The width and time between consecutive peaks were not different between different loading conditions (p > 0.05). Calcium signaling of in-situ chondrocytes did not increase under dynamic hydrostatic pressure of magnitudes up to 0.2 MPa at frequencies of 0.5 Hz and 0.05 Hz (p > 0.05). In conclusion, in-situ chondrocytes respond to physiological compressive loads in a strain rate-dependent manner with an increased number of responsive cells and unaltered temporal characteristics.

动态加载对原位软骨细胞钙信号传导的影响
软骨细胞通过增加细胞内的钙浓度对机械刺激做出反应。这种反应取决于细胞环境。以前的研究调查了在缓慢应变速率下的软骨细胞或嵌入水凝胶中的细胞,但尚未研究软骨细胞在其原生环境中在生理相关循环负荷和动态静水压下的反应。本研究调查了原位软骨细胞在不同频率和负载率的生理循环压缩负载和静水压力下的钙信号响应。用荧光钙指示剂染料对牛软骨外植体进行染色,并使用固定在共聚焦/多光子显微镜上的定制加载装置对其施加生理相关的循环载荷。对细胞的钙荧光强度进行跟踪和分析。加载组之间的比较采用单因素方差分析,然后进行Tukey校正后检验(α = 0.05)。与空载基线相比,所有压缩加载条件下发出信号的细胞百分比都有所增加。在 1 Hz 负载条件下响应的细胞百分比明显高于缓慢斜坡和 0.1 Hz 组(p 0.05)。不同加载条件下连续峰值的宽度和间隔时间没有差异(p > 0.05)。在频率为 0.5 Hz 和 0.05 Hz 时,原位软骨细胞的钙信号在高达 0.2 MPa 的动态静水压力下没有增加(p > 0.05)。总之,原位软骨细胞以应变率依赖性方式对生理压缩负荷做出反应,反应细胞数量增加,时间特征不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信