{"title":"Feline hypertrophic cardiomyopathy: Does the microRNA-mRNA regulatory network contribute to heart sarcomeric protein remodelling?","authors":"Gabriella Guelfi, Noemi Venanzi, Camilla Capaccia, Valentina Stefanetti, Chiara Brachelente, Monica Sforna, Francesco Porciello, Elvio Lepri","doi":"10.1111/iep.12514","DOIUrl":null,"url":null,"abstract":"<p>Feline primary hypertrophic cardiomyopathy (HCM) is an intrinsic myocardial disease characterized by concentric hypertrophy of the left ventricle. In the present study, we investigated the microRNA-mRNA regulatory network in feline myocardial tissue affected by primary (HCMI) and secondary HCM (HCMII). MRNA expression levels of sarcomeric genes, including, <i>TNNT2</i>, <i>TNNI3</i>, <i>MYH7</i>, <i>MYBPC3</i>, <i>TPM1</i> and <i>ACTC1</i> were assessed in the FFPE myocardial tissues. FFPE tissues from healthy cats were sequenced by the NGS, to explore, in the entire non-deposited miRNome, the expression level of microRNAs targeting the complementary sequences of selected sarcomeric mRNAs. The sarcomeric genes <i>TNNT2</i>, <i>MYH7</i>, <i>MYBPC3</i> and <i>TPM1</i> showed a statistically significant upregulation in HCMI compared to HCMII (<i>p</i> < .01), except <i>ACTC1</i> which was downregulated (<i>p</i> < .01); <i>TNNI3</i> showed no statistically significant difference. In HCMII miR-122-5p, miR-338-3p, miR-484, miR-370-3p, miR-92b-3p, miR-375 and miR-370-3p showed a significant upregulation (<i>p</i> < .01) compared to control. The exception was miR-30a-5p which showed downregulation. Worthy of note is the 4-fold higher expression of miR-370-3p, a key regulator of <i>MYBPC3</i>, in HMCI compared to HMCII. This research does not solve the aetiological mystery of HCM, but it may help to find a way to help diagnose and define the prognosis of HCM in cats.</p>","PeriodicalId":14157,"journal":{"name":"International Journal of Experimental Pathology","volume":"105 5","pages":"170-183"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/iep.12514","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Experimental Pathology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/iep.12514","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Feline primary hypertrophic cardiomyopathy (HCM) is an intrinsic myocardial disease characterized by concentric hypertrophy of the left ventricle. In the present study, we investigated the microRNA-mRNA regulatory network in feline myocardial tissue affected by primary (HCMI) and secondary HCM (HCMII). MRNA expression levels of sarcomeric genes, including, TNNT2, TNNI3, MYH7, MYBPC3, TPM1 and ACTC1 were assessed in the FFPE myocardial tissues. FFPE tissues from healthy cats were sequenced by the NGS, to explore, in the entire non-deposited miRNome, the expression level of microRNAs targeting the complementary sequences of selected sarcomeric mRNAs. The sarcomeric genes TNNT2, MYH7, MYBPC3 and TPM1 showed a statistically significant upregulation in HCMI compared to HCMII (p < .01), except ACTC1 which was downregulated (p < .01); TNNI3 showed no statistically significant difference. In HCMII miR-122-5p, miR-338-3p, miR-484, miR-370-3p, miR-92b-3p, miR-375 and miR-370-3p showed a significant upregulation (p < .01) compared to control. The exception was miR-30a-5p which showed downregulation. Worthy of note is the 4-fold higher expression of miR-370-3p, a key regulator of MYBPC3, in HMCI compared to HMCII. This research does not solve the aetiological mystery of HCM, but it may help to find a way to help diagnose and define the prognosis of HCM in cats.
期刊介绍:
Experimental Pathology encompasses the use of multidisciplinary scientific techniques to investigate the pathogenesis and progression of pathologic processes. The International Journal of Experimental Pathology - IJEP - publishes papers which afford new and imaginative insights into the basic mechanisms underlying human disease, including in vitro work, animal models, and clinical research.
Aiming to report on work that addresses the common theme of mechanism at a cellular and molecular level, IJEP publishes both original experimental investigations and review articles. Recent themes for review series have covered topics as diverse as "Viruses and Cancer", "Granulomatous Diseases", "Stem cells" and "Cardiovascular Pathology".