{"title":"Reduction in Renal Interstitial Fibrosis in Aged Male Mice by Intestinal Microbiota Rejuvenation.","authors":"Shaoyuan Cui, Qi Huang, Tian Li, Wanjun Shen, Xiangmei Chen, Xuefeng Sun","doi":"10.1159/000540839","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Renal interstitial fibrosis is an important pathological basis for kidney ageing and the progression of ageing nephropathy. In the present research, we established an aged mouse model of faecal microbiota transplantation (FMT), identified the rejuvenation features of the kidney in aged male mice, and preliminarily analysed the possible mechanism by which the rejuvenation of the intestinal microbiota reduces renal interstitial fibrosis and delays senescence in aged male mice.</p><p><strong>Methods: </strong>We established an aged male mice model that was treated with FMT (FMT-Old) and a normal aged male mice control group (Old). Differentially expressed cytokines were identified using a cytokine array, and changes in protein expression related to signal transduction pathways in renal tissues were detected using a signalling pathway array. Senescence-associated β-galactosidase and Masson staining were performed to observe the degrees of renal senescence and tubule interstitial fibrosis. Immunohistochemistry was utilized to detect changes in the expression of the ageing markers p53 and p21 and the inflammation-related protein nuclear factor (NF-κB) subunit (RelA/p65).</p><p><strong>Results: </strong>The pathological features of renal senescence in the FMT-Old group were significantly alleviated, and the levels of the ageing indicators p53 and p21 were decreased (p < 0.05). Ingenuity Pathway Analysis revealed that six differentially expressed cytokines, MIP-3β (CCL-19), E-selectin (SELE), Fas ligand (Fas L/FASLG), CXCL-11 (I-TAC), CXCL-1 and CCL-3 (MIP-1α) were related to a common upstream regulatory protein, RelA/p65, and the expression of this protein was significantly different between groups according to the signalling pathway array.</p><p><strong>Conclusion: </strong>Our findings suggest that the intestinal microbiota regulates the renal microenvironment by reducing immune inflammatory responses through the inhibition of the NF-κB signalling pathway, thereby delaying renal senescence in aged male mice.</p>","PeriodicalId":12662,"journal":{"name":"Gerontology","volume":" ","pages":"1161-1170"},"PeriodicalIF":3.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000540839","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Renal interstitial fibrosis is an important pathological basis for kidney ageing and the progression of ageing nephropathy. In the present research, we established an aged mouse model of faecal microbiota transplantation (FMT), identified the rejuvenation features of the kidney in aged male mice, and preliminarily analysed the possible mechanism by which the rejuvenation of the intestinal microbiota reduces renal interstitial fibrosis and delays senescence in aged male mice.
Methods: We established an aged male mice model that was treated with FMT (FMT-Old) and a normal aged male mice control group (Old). Differentially expressed cytokines were identified using a cytokine array, and changes in protein expression related to signal transduction pathways in renal tissues were detected using a signalling pathway array. Senescence-associated β-galactosidase and Masson staining were performed to observe the degrees of renal senescence and tubule interstitial fibrosis. Immunohistochemistry was utilized to detect changes in the expression of the ageing markers p53 and p21 and the inflammation-related protein nuclear factor (NF-κB) subunit (RelA/p65).
Results: The pathological features of renal senescence in the FMT-Old group were significantly alleviated, and the levels of the ageing indicators p53 and p21 were decreased (p < 0.05). Ingenuity Pathway Analysis revealed that six differentially expressed cytokines, MIP-3β (CCL-19), E-selectin (SELE), Fas ligand (Fas L/FASLG), CXCL-11 (I-TAC), CXCL-1 and CCL-3 (MIP-1α) were related to a common upstream regulatory protein, RelA/p65, and the expression of this protein was significantly different between groups according to the signalling pathway array.
Conclusion: Our findings suggest that the intestinal microbiota regulates the renal microenvironment by reducing immune inflammatory responses through the inhibition of the NF-κB signalling pathway, thereby delaying renal senescence in aged male mice.
期刊介绍:
In view of the ever-increasing fraction of elderly people, understanding the mechanisms of aging and age-related diseases has become a matter of urgent necessity. ''Gerontology'', the oldest journal in the field, responds to this need by drawing topical contributions from multiple disciplines to support the fundamental goals of extending active life and enhancing its quality. The range of papers is classified into four sections. In the Clinical Section, the aetiology, pathogenesis, prevention and treatment of agerelated diseases are discussed from a gerontological rather than a geriatric viewpoint. The Experimental Section contains up-to-date contributions from basic gerontological research. Papers dealing with behavioural development and related topics are placed in the Behavioural Science Section. Basic aspects of regeneration in different experimental biological systems as well as in the context of medical applications are dealt with in a special section that also contains information on technological advances for the elderly. Providing a primary source of high-quality papers covering all aspects of aging in humans and animals, ''Gerontology'' serves as an ideal information tool for all readers interested in the topic of aging from a broad perspective.