{"title":"Effect of hydrochar from sludge mixed with coffee grounds on the immobilization of Cu, Cr and Ni in soil.","authors":"Jingxiang Tang, Yu Chen, Liwenze He, Yanjun Li, Haiquan Li, Fei Sun, Ying Liu","doi":"10.1080/09593330.2024.2391077","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, hydrochars were prepared at varying temperatures with distinct mixing ratio, and then the hydrochars were characterized and evaluated for heavy metals to ascertain its potential as a soil conditioner. The application of elevated temperatures resulted in a reduction in the yield of hydrochars, whereas the incorporation of coffee grounds led to an increase in the yield. The blended hydrochar displays elevated ash, fixed carbon, and diminished H/C, O/C, and (O + N)/C ratios, indicating enhanced stability in soil treatment and potential for enhanced soil fertility. The application of hydrothermal carbonization facilitated the stabilization of heavy metals within the sewage sludge, with the stabilizing effect being enhanced by the addition of coffee grounds. Following the application of SCC as a soil conditioner to the heavy metal-contaminated soil for a period of 90 days, it was observed that the heavy metals Cu, Cr, and Ni present in the contaminated soil underwent a transition from an unstable to a stable speciation. Of the treatments tested, AK15 was identified as the most effective, demonstrating a significant reduction in the risk of leaching and biotoxicity associated with Cu, Cr, and Ni in the contaminated soil.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1573-1585"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2391077","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, hydrochars were prepared at varying temperatures with distinct mixing ratio, and then the hydrochars were characterized and evaluated for heavy metals to ascertain its potential as a soil conditioner. The application of elevated temperatures resulted in a reduction in the yield of hydrochars, whereas the incorporation of coffee grounds led to an increase in the yield. The blended hydrochar displays elevated ash, fixed carbon, and diminished H/C, O/C, and (O + N)/C ratios, indicating enhanced stability in soil treatment and potential for enhanced soil fertility. The application of hydrothermal carbonization facilitated the stabilization of heavy metals within the sewage sludge, with the stabilizing effect being enhanced by the addition of coffee grounds. Following the application of SCC as a soil conditioner to the heavy metal-contaminated soil for a period of 90 days, it was observed that the heavy metals Cu, Cr, and Ni present in the contaminated soil underwent a transition from an unstable to a stable speciation. Of the treatments tested, AK15 was identified as the most effective, demonstrating a significant reduction in the risk of leaching and biotoxicity associated with Cu, Cr, and Ni in the contaminated soil.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current