Daisy Pineda-Suazo, Wendy Escobedo-Hinojosa, Lenin E Fabian-Canseco, Pedro Gallardo, Cintia Moguel-Ojeda, Claudia Caamal-Monsreal, Ariadna Sánchez-Arteaga, Carlos Rosas
{"title":"Evaluation of Octopus maya enzyme activity of the digestive gland and gastric juice.","authors":"Daisy Pineda-Suazo, Wendy Escobedo-Hinojosa, Lenin E Fabian-Canseco, Pedro Gallardo, Cintia Moguel-Ojeda, Claudia Caamal-Monsreal, Ariadna Sánchez-Arteaga, Carlos Rosas","doi":"10.1242/bio.060429","DOIUrl":null,"url":null,"abstract":"<p><p>As the demand for Octopus maya grows, sustainable farming practices become essential to prevent overexploitation, so that farming can be developed as a sustainable alternative to traditional fishing. Understanding the digestive dynamics of the octopus is essential for devising optimal dietary formulations in aquaculture. Despite the progress in understanding cephalopod digestion, little is known about the specific functioning of the digestive enzymes responsible for breaking down protein substrates. This knowledge gap underscores the need for further research to support sustainable O. maya population management. In this paper, dietary formulations are identified for cephalopods by characterizing O. maya digestive enzymes present in the digestive gland and gastric juice. The investigation revealed that acidic proteases showed a peak activity at higher temperatures than alkaline proteases. Inhibitors confirmed the presence of H, L, and D cathepsins. The lower activation energy of alkaline enzymes compared to acidic ones observed highlights an intriguing aspect of O. maya's digestive physiology. This research provides valuable insights into O. maya digestive enzyme functions, representing a significant advancement in formulating diets crucial for successful octopus farming that may help to fully understand its physiology.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413930/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Open","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.060429","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As the demand for Octopus maya grows, sustainable farming practices become essential to prevent overexploitation, so that farming can be developed as a sustainable alternative to traditional fishing. Understanding the digestive dynamics of the octopus is essential for devising optimal dietary formulations in aquaculture. Despite the progress in understanding cephalopod digestion, little is known about the specific functioning of the digestive enzymes responsible for breaking down protein substrates. This knowledge gap underscores the need for further research to support sustainable O. maya population management. In this paper, dietary formulations are identified for cephalopods by characterizing O. maya digestive enzymes present in the digestive gland and gastric juice. The investigation revealed that acidic proteases showed a peak activity at higher temperatures than alkaline proteases. Inhibitors confirmed the presence of H, L, and D cathepsins. The lower activation energy of alkaline enzymes compared to acidic ones observed highlights an intriguing aspect of O. maya's digestive physiology. This research provides valuable insights into O. maya digestive enzyme functions, representing a significant advancement in formulating diets crucial for successful octopus farming that may help to fully understand its physiology.
背景:随着对玛雅章鱼需求的增长,可持续的养殖方法对防止过度捕捞至关重要。因此,发展章鱼养殖业可替代传统捕捞业,实现可持续发展。了解消化动力学对于设计水产养殖中的最佳日粮配方至关重要,尤其是酶的作用,如螯合酶和其他酶。尽管在了解头足类消化方面取得了进展,但人们对负责分解蛋白质基质的消化酶的具体功能知之甚少。这一知识空白强调了进一步研究的必要性,以确保 O. maya 种群的可持续管理:通过分析 O. maya 消化腺和胃液中消化酶的特性,确定了头足类的饮食配方。本次调查显示,酸性蛋白酶在较高温度下的活性峰值高于碱性蛋白酶。抑制剂证实了 H、L 和 D 三种蛋白酶的存在。值得注意的是,碱性酶的活化能低于酸性酶,这凸显了玛雅鸥消化生理的一个有趣方面:总之,这项研究为了解玛雅章鱼消化酶的功能提供了有价值的见解,这对成功养殖玛雅章鱼至关重要的日粮配方是一个重大进步,有助于全面了解其生理机能。
期刊介绍:
Biology Open (BiO) is an online Open Access journal that publishes peer-reviewed original research across all aspects of the biological sciences. BiO aims to provide rapid publication for scientifically sound observations and valid conclusions, without a requirement for perceived impact.