Non-invasive prediction of axillary lymph node dissection exemption in breast cancer patients post-neoadjuvant therapy: A radiomics and deep learning analysis on longitudinal DCE-MRI data

IF 5.7 2区 医学 Q1 OBSTETRICS & GYNECOLOGY
Yushuai Yu , Ruiliang Chen , Jialu Yi , Kaiyan Huang , Xin Yu , Jie Zhang , Chuangui Song
{"title":"Non-invasive prediction of axillary lymph node dissection exemption in breast cancer patients post-neoadjuvant therapy: A radiomics and deep learning analysis on longitudinal DCE-MRI data","authors":"Yushuai Yu ,&nbsp;Ruiliang Chen ,&nbsp;Jialu Yi ,&nbsp;Kaiyan Huang ,&nbsp;Xin Yu ,&nbsp;Jie Zhang ,&nbsp;Chuangui Song","doi":"10.1016/j.breast.2024.103786","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>In breast cancer (BC) patients with clinical axillary lymph node metastasis (cN+) undergoing neoadjuvant therapy (NAT), precise axillary lymph node (ALN) assessment dictates therapeutic strategy. There is a critical demand for a precise method to assess the axillary lymph node (ALN) status in these patients.</p></div><div><h3>Materials and methods</h3><p>A retrospective analysis was conducted on 160 BC patients undergoing NAT at Fujian Medical University Union Hospital. We analyzed baseline and two-cycle reassessment dynamic contrast-enhanced MRI (DCE-MRI) images, extracting 3668 radiomic and 4096 deep learning features, and computing 1834 delta-radiomic and 2048 delta-deep learning features. Light Gradient Boosting Machine (LightGBM), Support Vector Machine (SVM), RandomForest, and Multilayer Perceptron (MLP) algorithms were employed to develop risk models and were evaluated using 10-fold cross-validation.</p></div><div><h3>Results</h3><p>Of the patients, 61 (38.13 %) achieved ypN0 status post-NAT. Univariate and multivariable logistic regression analyses revealed molecular subtypes and Ki67 as pivotal predictors of achieving ypN0 post-NAT. The SVM-based “Data Amalgamation” model that integrates radiomic, deep learning features, and clinical data, exhibited an outstanding AUC of 0.986 (95 % CI: 0.954–1.000), surpassing other models.</p></div><div><h3>Conclusion</h3><p>Our study illuminates the challenges and opportunities inherent in breast cancer management post-NAT. By introducing a sophisticated, SVM-based “Data Amalgamation” model, we propose a way towards accurate, dynamic ALN assessments, offering potential for personalized therapeutic strategies in BC.</p></div>","PeriodicalId":9093,"journal":{"name":"Breast","volume":"77 ","pages":"Article 103786"},"PeriodicalIF":5.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960977624001176/pdfft?md5=6038c7edb2a3b27da76fa99d12532300&pid=1-s2.0-S0960977624001176-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960977624001176","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

In breast cancer (BC) patients with clinical axillary lymph node metastasis (cN+) undergoing neoadjuvant therapy (NAT), precise axillary lymph node (ALN) assessment dictates therapeutic strategy. There is a critical demand for a precise method to assess the axillary lymph node (ALN) status in these patients.

Materials and methods

A retrospective analysis was conducted on 160 BC patients undergoing NAT at Fujian Medical University Union Hospital. We analyzed baseline and two-cycle reassessment dynamic contrast-enhanced MRI (DCE-MRI) images, extracting 3668 radiomic and 4096 deep learning features, and computing 1834 delta-radiomic and 2048 delta-deep learning features. Light Gradient Boosting Machine (LightGBM), Support Vector Machine (SVM), RandomForest, and Multilayer Perceptron (MLP) algorithms were employed to develop risk models and were evaluated using 10-fold cross-validation.

Results

Of the patients, 61 (38.13 %) achieved ypN0 status post-NAT. Univariate and multivariable logistic regression analyses revealed molecular subtypes and Ki67 as pivotal predictors of achieving ypN0 post-NAT. The SVM-based “Data Amalgamation” model that integrates radiomic, deep learning features, and clinical data, exhibited an outstanding AUC of 0.986 (95 % CI: 0.954–1.000), surpassing other models.

Conclusion

Our study illuminates the challenges and opportunities inherent in breast cancer management post-NAT. By introducing a sophisticated, SVM-based “Data Amalgamation” model, we propose a way towards accurate, dynamic ALN assessments, offering potential for personalized therapeutic strategies in BC.

新辅助治疗后乳腺癌患者腋窝淋巴结清扫豁免的无创预测:对纵向 DCE-MRI 数据进行放射组学和深度学习分析。
目的:在接受新辅助治疗(NAT)的临床腋窝淋巴结转移(cN+)的乳腺癌(BC)患者中,精确的腋窝淋巴结(ALN)评估决定了治疗策略。目前迫切需要一种精确的方法来评估这些患者的腋窝淋巴结(ALN)状态:我们对福建医科大学附属协和医院接受 NAT 治疗的 160 例 BC 患者进行了回顾性分析。我们分析了基线和两周期再评估动态对比增强核磁共振成像(DCE-MRI)图像,提取了3668个放射学特征和4096个深度学习特征,计算了1834个δ-放射学特征和2048个δ-深度学习特征。采用光梯度提升机(LightGBM)、支持向量机(SVM)、随机森林(RandomForest)和多层感知器(MLP)算法开发风险模型,并使用10倍交叉验证进行评估:61名患者(38.13%)在NAT后达到了ypN0状态。单变量和多变量逻辑回归分析显示,分子亚型和 Ki67 是预测 NAT 后达到 ypN0 的关键因素。基于 SVM 的 "数据整合 "模型整合了放射学、深度学习特征和临床数据,其 AUC 高达 0.986(95 % CI:0.954-1.000),超过了其他模型:我们的研究揭示了 NAT 后乳腺癌管理中固有的挑战和机遇。通过引入复杂的、基于 SVM 的 "数据合并 "模型,我们提出了一种实现准确、动态 ALN 评估的方法,为 BC 的个性化治疗策略提供了潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Breast
Breast 医学-妇产科学
CiteScore
8.70
自引率
2.60%
发文量
165
审稿时长
59 days
期刊介绍: The Breast is an international, multidisciplinary journal for researchers and clinicians, which focuses on translational and clinical research for the advancement of breast cancer prevention, diagnosis and treatment of all stages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信