Incretin-based therapies for the management of cardiometabolic disease in the clinic: Past, present, and future.

IF 10.9 1区 医学 Q1 CHEMISTRY, MEDICINAL
Medicinal Research Reviews Pub Date : 2025-01-01 Epub Date: 2024-08-14 DOI:10.1002/med.22070
James P Psaltis, Jessica A Marathe, Mau T Nguyen, Richard Le, Christina A Bursill, Chinmay S Marathe, Adam J Nelson, Peter J Psaltis
{"title":"Incretin-based therapies for the management of cardiometabolic disease in the clinic: Past, present, and future.","authors":"James P Psaltis, Jessica A Marathe, Mau T Nguyen, Richard Le, Christina A Bursill, Chinmay S Marathe, Adam J Nelson, Peter J Psaltis","doi":"10.1002/med.22070","DOIUrl":null,"url":null,"abstract":"<p><p>Among newer classes of drugs for type 2 diabetes mellitus (T2DM), glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are incretin-based agents that lower both blood sugar levels and promote weight loss. They do so by activating pancreatic GLP-1 receptors (GLP-1R) to promote glucose-dependent insulin release and inhibit glucagon secretion. They also act on receptors in the brain and gastrointestinal tract to suppress appetite, slow gastric emptying, and delay glucose absorption. Phase 3 clinical trials have shown that GLP-1 RAs improve cardiovascular outcomes in the setting of T2DM or overweight/obesity in people who have, or are at high risk of having atherosclerotic cardiovascular disease. This is largely driven by reductions in ischemic events, although emerging evidence also supports benefits in other cardiovascular conditions, such as heart failure with preserved ejection fraction. The success of GLP-1 RAs has also seen the evolution of other incretin therapies. Tirzepatide has emerged as a dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RA, with more striking effects on glycemic control and weight reduction than those achieved by isolated GLP-1R agonism alone. This consists of lowering glycated hemoglobin levels by more than 2% and weight loss exceeding 15% from baseline. Here, we review the pharmacological properties of GLP-1 RAs and tirzepatide and discuss their clinical effectiveness for T2DM and overweight/obesity, including their ability to reduce adverse cardiovascular outcomes. We also delve into the mechanistic basis for these cardioprotective effects and consider the next steps in implementing existing and future incretin-based therapies for the broader management of cardiometabolic disease.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":" ","pages":"29-65"},"PeriodicalIF":10.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11638809/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/med.22070","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Among newer classes of drugs for type 2 diabetes mellitus (T2DM), glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are incretin-based agents that lower both blood sugar levels and promote weight loss. They do so by activating pancreatic GLP-1 receptors (GLP-1R) to promote glucose-dependent insulin release and inhibit glucagon secretion. They also act on receptors in the brain and gastrointestinal tract to suppress appetite, slow gastric emptying, and delay glucose absorption. Phase 3 clinical trials have shown that GLP-1 RAs improve cardiovascular outcomes in the setting of T2DM or overweight/obesity in people who have, or are at high risk of having atherosclerotic cardiovascular disease. This is largely driven by reductions in ischemic events, although emerging evidence also supports benefits in other cardiovascular conditions, such as heart failure with preserved ejection fraction. The success of GLP-1 RAs has also seen the evolution of other incretin therapies. Tirzepatide has emerged as a dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RA, with more striking effects on glycemic control and weight reduction than those achieved by isolated GLP-1R agonism alone. This consists of lowering glycated hemoglobin levels by more than 2% and weight loss exceeding 15% from baseline. Here, we review the pharmacological properties of GLP-1 RAs and tirzepatide and discuss their clinical effectiveness for T2DM and overweight/obesity, including their ability to reduce adverse cardiovascular outcomes. We also delve into the mechanistic basis for these cardioprotective effects and consider the next steps in implementing existing and future incretin-based therapies for the broader management of cardiometabolic disease.

临床上治疗心脏代谢疾病的胰岛素疗法:过去、现在和未来。
在治疗 2 型糖尿病(T2DM)的新型药物中,胰高血糖素样肽 1 受体激动剂(GLP-1 RAs)是一种基于增量素的药物,既能降低血糖水平,又能促进减肥。它们通过激活胰腺 GLP-1 受体(GLP-1R)来促进葡萄糖依赖性胰岛素的释放并抑制胰高血糖素的分泌。它们还作用于大脑和胃肠道中的受体,抑制食欲,减缓胃排空,延缓葡萄糖吸收。3 期临床试验显示,GLP-1 RAs 可改善患有或极有可能患有动脉粥样硬化性心血管疾病的 T2DM 或超重/肥胖症患者的心血管预后。这主要是由于缺血性事件的减少,尽管新出现的证据也支持在其他心血管疾病中的益处,如射血分数保留的心力衰竭。GLP-1 RA 的成功也见证了其他增量素疗法的发展。替扎帕肽是一种葡萄糖依赖性促胰岛素多肽(GIP)/GLP-1 RA 双重疗法,对血糖控制和减轻体重的效果比单独使用 GLP-1R 激动剂更为显著。这包括糖化血红蛋白水平降低 2% 以上,体重从基线下降 15% 以上。在此,我们回顾了 GLP-1 RA 和替哌肽的药理特性,并讨论了它们对 T2DM 和超重/肥胖症的临床疗效,包括它们减少不良心血管后果的能力。我们还将深入探讨这些心血管保护作用的机理基础,并考虑下一步如何将现有和未来的增量素疗法用于更广泛的心血管代谢疾病管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
29.30
自引率
0.00%
发文量
52
审稿时长
2 months
期刊介绍: Medicinal Research Reviews is dedicated to publishing timely and critical reviews, as well as opinion-based articles, covering a broad spectrum of topics related to medicinal research. These contributions are authored by individuals who have made significant advancements in the field. Encompassing a wide range of subjects, suitable topics include, but are not limited to, the underlying pathophysiology of crucial diseases and disease vectors, therapeutic approaches for diverse medical conditions, properties of molecular targets for therapeutic agents, innovative methodologies facilitating therapy discovery, genomics and proteomics, structure-activity correlations of drug series, development of new imaging and diagnostic tools, drug metabolism, drug delivery, and comprehensive examinations of the chemical, pharmacological, pharmacokinetic, pharmacodynamic, and clinical characteristics of significant drugs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信