{"title":"Designed bi-directional cation/anion interfacial distribution of perovskite solar cells","authors":"","doi":"10.1016/j.joule.2024.07.010","DOIUrl":null,"url":null,"abstract":"<p>Pseudo-halide anion formate (HCOO<sup>−</sup>) in halide perovskite has been widely employed to improve film quality without altering the band gap. However, there is a lack of understanding regarding the effect on perovskite films depending on the chemical bonding state of formate. Herein, we demonstrated the distinguishable crystallization behavior of FAPbI<sub>3</sub> film by comparing the formate salts with different bonding states. Furthermore, we found that distinct passivation mechanisms depended on the cations of formate salts, which resulted in the differences in device performance. Notably, sodium-based formate exhibited simultaneous bi-directional behavior of cation and anion, distinguishing it from other formate salts. Consequently, the device exhibited an enhanced power conversion efficiency (PCE) of 25.6% with a significantly high open-circuit voltage (<em>V</em><sub><em>oc</em></sub>) of 1.18 V. This work provides insights into the effect on the chemical bonding state of formate, as well as different passivation mechanisms depending on the cations of formate salts.</p>","PeriodicalId":343,"journal":{"name":"Joule","volume":null,"pages":null},"PeriodicalIF":38.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.07.010","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pseudo-halide anion formate (HCOO−) in halide perovskite has been widely employed to improve film quality without altering the band gap. However, there is a lack of understanding regarding the effect on perovskite films depending on the chemical bonding state of formate. Herein, we demonstrated the distinguishable crystallization behavior of FAPbI3 film by comparing the formate salts with different bonding states. Furthermore, we found that distinct passivation mechanisms depended on the cations of formate salts, which resulted in the differences in device performance. Notably, sodium-based formate exhibited simultaneous bi-directional behavior of cation and anion, distinguishing it from other formate salts. Consequently, the device exhibited an enhanced power conversion efficiency (PCE) of 25.6% with a significantly high open-circuit voltage (Voc) of 1.18 V. This work provides insights into the effect on the chemical bonding state of formate, as well as different passivation mechanisms depending on the cations of formate salts.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.