Mingming Cui, Ming Xiao, Defang Zhang, Zhanling Xie
{"title":"Characterization of Goji Quality at Different Harvest Stages in Qaidam Basin Based on Transcriptome and Widely Targeted Metabolome","authors":"Mingming Cui, Ming Xiao, Defang Zhang, Zhanling Xie","doi":"10.1155/2024/1139944","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Goji, a renowned traditional Chinese medicine and food source, is characterized by a long fruiting period. This study was conducted to investigate the variations in nutritional quality of goji berries across different harvest stages by utilizing widely targeted metabolome and transcriptome. The results showed that goji berries of the first harvest stage had advantages in terms of size and metabolic levels, and there was little difference in sugars and organic acids levels. Within significantly enriched phenylpropanoid and flavonoid pathways, chlorogenic acid, and its positional isomers (neochlorogenic acid and cryptochlorogenic acid) increased significantly along with P-coumaroyl quinic acid as the harvest stages progressed, while the other bioactive DEMs including scopoletin, scopolin, naringenin, and pruning exhibited a decreasing trend. The key DEGs encoding PAL, HCT, 4CL, C4H, TOGT1, and C12RT1 were suggested to regulate the variations of these DEMs. Furthermore, six oxidative metabolites enriched in alpha-linolenic acid and linoleic acid metabolism pathways all peaked at the second harvest stage. Climate or plant weakening is suggested as potential factors influencing the metabolic and transcriptomic changes in goji berries. This study provides a fresh perspective on understanding the accumulation of metabolites and their molecular mechanisms in goji at different harvest stages in the Qaidam Basin and can be used to guide goji production and processing.</p>\n </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/1139944","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/1139944","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Goji, a renowned traditional Chinese medicine and food source, is characterized by a long fruiting period. This study was conducted to investigate the variations in nutritional quality of goji berries across different harvest stages by utilizing widely targeted metabolome and transcriptome. The results showed that goji berries of the first harvest stage had advantages in terms of size and metabolic levels, and there was little difference in sugars and organic acids levels. Within significantly enriched phenylpropanoid and flavonoid pathways, chlorogenic acid, and its positional isomers (neochlorogenic acid and cryptochlorogenic acid) increased significantly along with P-coumaroyl quinic acid as the harvest stages progressed, while the other bioactive DEMs including scopoletin, scopolin, naringenin, and pruning exhibited a decreasing trend. The key DEGs encoding PAL, HCT, 4CL, C4H, TOGT1, and C12RT1 were suggested to regulate the variations of these DEMs. Furthermore, six oxidative metabolites enriched in alpha-linolenic acid and linoleic acid metabolism pathways all peaked at the second harvest stage. Climate or plant weakening is suggested as potential factors influencing the metabolic and transcriptomic changes in goji berries. This study provides a fresh perspective on understanding the accumulation of metabolites and their molecular mechanisms in goji at different harvest stages in the Qaidam Basin and can be used to guide goji production and processing.
期刊介绍:
The Journal of Food Biochemistry publishes fully peer-reviewed original research and review papers on the effects of handling, storage, and processing on the biochemical aspects of food tissues, systems, and bioactive compounds in the diet.
Researchers in food science, food technology, biochemistry, and nutrition, particularly based in academia and industry, will find much of great use and interest in the journal. Coverage includes:
-Biochemistry of postharvest/postmortem and processing problems
-Enzyme chemistry and technology
-Membrane biology and chemistry
-Cell biology
-Biophysics
-Genetic expression
-Pharmacological properties of food ingredients with an emphasis on the content of bioactive ingredients in foods
Examples of topics covered in recently-published papers on two topics of current wide interest, nutraceuticals/functional foods and postharvest/postmortem, include the following:
-Bioactive compounds found in foods, such as chocolate and herbs, as they affect serum cholesterol, diabetes, hypertension, and heart disease
-The mechanism of the ripening process in fruit
-The biogenesis of flavor precursors in meat
-How biochemical changes in farm-raised fish are affecting processing and edible quality