Fingerprint Localization Scheme with Correction for Missing Values in Training Data and Data Augmentation

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Togo Shinomiya;Satoru Aikawa;Shinichiro Yamamoto
{"title":"Fingerprint Localization Scheme with Correction for Missing Values in Training Data and Data Augmentation","authors":"Togo Shinomiya;Satoru Aikawa;Shinichiro Yamamoto","doi":"10.23919/comex.2024TCL0010","DOIUrl":null,"url":null,"abstract":"This study discusses an indoor localization method using the radio signal strength indicator (RSSI) of a wireless local area network (LAN). An indoor localization method that adapts a convolutional neural network (CNN) to the fingerprint method is used. In this method, the CNN learns the access point (AP) information for each coordinate using the RSSI and media access control (MAC) addresses obtained from the wireless LAN APs and compares them with the AP information received from the user to estimate the user location. However, data collection for learning is costly when using CNNs. In addition, there is a problem of missing data owing to various factors when collecting AP information. Therefore, data augmentation is proposed as a method to reduce the cost of data collection while maintaining accuracy and is performed after correcting for missing values. However, data augmentation can produce unrealistic data. This paper proposes a method for correcting missing values in measurement data as a solution to this problem.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"13 8","pages":"295-298"},"PeriodicalIF":0.3000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10471267","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10471267/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study discusses an indoor localization method using the radio signal strength indicator (RSSI) of a wireless local area network (LAN). An indoor localization method that adapts a convolutional neural network (CNN) to the fingerprint method is used. In this method, the CNN learns the access point (AP) information for each coordinate using the RSSI and media access control (MAC) addresses obtained from the wireless LAN APs and compares them with the AP information received from the user to estimate the user location. However, data collection for learning is costly when using CNNs. In addition, there is a problem of missing data owing to various factors when collecting AP information. Therefore, data augmentation is proposed as a method to reduce the cost of data collection while maintaining accuracy and is performed after correcting for missing values. However, data augmentation can produce unrealistic data. This paper proposes a method for correcting missing values in measurement data as a solution to this problem.
校正训练数据缺失值和增强数据的指纹定位方案
本研究讨论了一种利用无线局域网(LAN)的无线电信号强度指示器(RSSI)进行室内定位的方法。它采用了一种将卷积神经网络(CNN)与指纹法相适配的室内定位方法。在这种方法中,CNN 利用从无线局域网接入点获得的 RSSI 和媒体访问控制 (MAC) 地址,学习每个坐标的接入点 (AP) 信息,并将其与从用户处获得的接入点信息进行比较,以估计用户位置。然而,在使用 CNN 时,用于学习的数据收集成本很高。此外,在收集接入点信息时,还存在因各种因素造成的数据缺失问题。因此,有人提出了数据增强方法,作为一种在保持准确性的同时降低数据收集成本的方法,并在校正缺失值后进行数据增强。然而,数据扩增可能会产生不真实的数据。本文提出了一种校正测量数据缺失值的方法,以解决这一问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信