Neural subspaces of imagined movements in parietal cortex remain stable over several years in humans.

L Bashford, I A Rosenthal, S Kellis, D Bjånes, K Pejsa, B W Brunton, R A Andersen
{"title":"Neural subspaces of imagined movements in parietal cortex remain stable over several years in humans.","authors":"L Bashford, I A Rosenthal, S Kellis, D Bjånes, K Pejsa, B W Brunton, R A Andersen","doi":"10.1088/1741-2552/ad6e19","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>A crucial goal in brain-machine interfacing is the long-term stability of neural decoding performance, ideally without regular retraining. Long-term stability has only been previously demonstrated in non-human primate experiments and only in primary sensorimotor cortices. Here we extend previous methods to determine long-term stability in humans by identifying and aligning low-dimensional structures in neural data.<i>Approach.</i>Over a period of 1106 and 871 d respectively, two participants completed an imagined center-out reaching task. The longitudinal accuracy between all day pairs was assessed by latent subspace alignment using principal components analysis and canonical correlations analysis of multi-unit intracortical recordings in different brain regions (Brodmann Area 5, Anterior Intraparietal Area and the junction of the postcentral and intraparietal sulcus).<i>Main results.</i>We show the long-term stable representation of neural activity in subspaces of intracortical recordings from higher-order association areas in humans.<i>Significance.</i>These results can be practically applied to significantly expand the longevity and generalizability of brain-computer interfaces.Clinical TrialsNCT01849822, NCT01958086, NCT01964261.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350602/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad6e19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.A crucial goal in brain-machine interfacing is the long-term stability of neural decoding performance, ideally without regular retraining. Long-term stability has only been previously demonstrated in non-human primate experiments and only in primary sensorimotor cortices. Here we extend previous methods to determine long-term stability in humans by identifying and aligning low-dimensional structures in neural data.Approach.Over a period of 1106 and 871 d respectively, two participants completed an imagined center-out reaching task. The longitudinal accuracy between all day pairs was assessed by latent subspace alignment using principal components analysis and canonical correlations analysis of multi-unit intracortical recordings in different brain regions (Brodmann Area 5, Anterior Intraparietal Area and the junction of the postcentral and intraparietal sulcus).Main results.We show the long-term stable representation of neural activity in subspaces of intracortical recordings from higher-order association areas in humans.Significance.These results can be practically applied to significantly expand the longevity and generalizability of brain-computer interfaces.Clinical TrialsNCT01849822, NCT01958086, NCT01964261.

人类顶叶皮层中想象运动的神经子空间在数年内保持稳定。
目标 脑机接口的一个重要目标是神经解码性能的长期稳定性,理想情况下无需定期重新训练。长期稳定性以前只在非人灵长类实验中得到过证明,而且只在初级感觉运动皮层中得到过证明。在这里,我们扩展了之前的方法,通过识别和排列神经数据中的低维结构来确定人类的长期稳定性。 两名参与者分别在1106天和871天内完成了一项想象中的中心向外伸手任务。通过对不同脑区(布罗德曼第5区、顶内前区以及中央后沟和顶内沟交界处)的多单元皮层内记录进行主成分分析和典型相关分析,采用潜在子空间配准法评估了所有天数对之间的纵向准确性。 主要结果 我们展示了神经活动在人类高阶联想区皮层内记录子空间中的长期稳定表征。 意义 这些结果可实际应用于大幅提高脑机接口的寿命和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信