Fine-mapping of LrN3B on wheat chromosome arm 3BS, one of the two complementary genes for adult-plant leaf rust resistance.

IF 4.4 1区 农林科学 Q1 AGRONOMY
Weidong Wang, Huifang Li, Lina Qiu, Huifang Wang, Wei Pan, Zuhuan Yang, Wenxin Wei, Nannan Liu, Junna Sun, Zhaorong Hu, Jun Ma, Zhongfu Ni, Yinghui Li, Qixin Sun, Chaojie Xie
{"title":"Fine-mapping of LrN3B on wheat chromosome arm 3BS, one of the two complementary genes for adult-plant leaf rust resistance.","authors":"Weidong Wang, Huifang Li, Lina Qiu, Huifang Wang, Wei Pan, Zuhuan Yang, Wenxin Wei, Nannan Liu, Junna Sun, Zhaorong Hu, Jun Ma, Zhongfu Ni, Yinghui Li, Qixin Sun, Chaojie Xie","doi":"10.1007/s00122-024-04706-w","DOIUrl":null,"url":null,"abstract":"<p><p>The common wheat line 4N0461 showed adult-plant resistance to leaf rust. 4N0461 was crossed with susceptible cultivars Nongda4503 and Shi4185 to map the causal resistance gene(s). Segregation of leaf rust response in F<sub>2</sub> populations from both crosses was 9 resistant:7 susceptible, indicative of two complementary dominant resistance genes. The genes were located on chromosome arms 3BS and 4BL and temporarily named LrN3B and LrN4B, respectively. Subpopulations from 4N0461 × Nongda4503 with LrN3B segregating as a single allele were used to fine-map LrN3B locus. LrN3B was delineated in a genetic interval of 0.07 cM, corresponding to 106 kb based on the Chinese Spring reference genome (IWGSC RefSeq v1.1). Four genes were annotated in this region, among which TraesCS3B02G014800 and TraesCS3B02G014900 differed between resistant and susceptible genotypes, and both were required for LrN3B resistance in virus-induced gene silencing experiments. Diagnostic markers developed for checking the polymorphism of each candidate gene, can be used for marker-assisted selection in wheat breeding programs.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04706-w","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

The common wheat line 4N0461 showed adult-plant resistance to leaf rust. 4N0461 was crossed with susceptible cultivars Nongda4503 and Shi4185 to map the causal resistance gene(s). Segregation of leaf rust response in F2 populations from both crosses was 9 resistant:7 susceptible, indicative of two complementary dominant resistance genes. The genes were located on chromosome arms 3BS and 4BL and temporarily named LrN3B and LrN4B, respectively. Subpopulations from 4N0461 × Nongda4503 with LrN3B segregating as a single allele were used to fine-map LrN3B locus. LrN3B was delineated in a genetic interval of 0.07 cM, corresponding to 106 kb based on the Chinese Spring reference genome (IWGSC RefSeq v1.1). Four genes were annotated in this region, among which TraesCS3B02G014800 and TraesCS3B02G014900 differed between resistant and susceptible genotypes, and both were required for LrN3B resistance in virus-induced gene silencing experiments. Diagnostic markers developed for checking the polymorphism of each candidate gene, can be used for marker-assisted selection in wheat breeding programs.

Abstract Image

LrN3B 在小麦染色体臂 3BS 上的精细图谱,它是小麦叶锈病成株抗性的两个互补基因之一。
普通小麦品系 4N0461 表现出对叶锈病的成株抗性。4N0461 与易感栽培品种 Nongda4503 和 Shi4185 杂交,以绘制抗病基因图谱。在两个杂交的 F2 群体中,叶锈病反应的分离是 9 抗:7 感,表明有两个互补的显性抗性基因。这两个基因位于染色体臂 3BS 和 4BL 上,暂时分别命名为 LrN3B 和 LrN4B。利用 4N0461 × Nongda4503 中以 LrN3B 为单等位基因分离的亚群对 LrN3B 基因座进行精细图谱绘制。根据中国春参考基因组(IWGSC RefSeq v1.1),LrN3B 被划定在一个 0.07 cM 的遗传间隔内,相当于 106 kb。该区域有四个基因被注释,其中 TraesCS3B02G014800 和 TraesCS3B02G014900 在抗性基因型和易感基因型之间存在差异,在病毒诱导的基因沉默实验中,这两个基因都是 LrN3B 抗性所必需的。为检测每个候选基因的多态性而开发的诊断标记可用于小麦育种计划中的标记辅助选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信