Isolation and Identification of Naphthalene-Degrading Bacteria and its Application in a Two-phase Partitioning Bioreactor.

IF 0.8 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ran Deng, Jing Li, Bo Yu Liu, Jie Du, JianGuo Lu, Qiang Li, QianRu Hou
{"title":"Isolation and Identification of Naphthalene-Degrading Bacteria and its Application in a Two-phase Partitioning Bioreactor.","authors":"Ran Deng, Jing Li, Bo Yu Liu, Jie Du, JianGuo Lu, Qiang Li, QianRu Hou","doi":"10.2323/jgam.2024.07.003","DOIUrl":null,"url":null,"abstract":"<p><p>Naphthalene is a persistent environmental pollutant for its potential teratogenic, carcinogenic and mutagenic effects. In this study, 10 strains of bacteria capable of degrading naphthalene were isolated from crude-oil contaminated soil. Among them, Pseudomonas plecoglossicida 2P exhibited prominent growth with 1000 mg/L naphthalene as the sole carbon source and degraded 94.15% of naphthalene in 36 h. Whole genome sequencing analysis showed that P. plecoglossicida 2P had a total of 22 genes related to naphthalene degradation, of which 8 genes were related to the salicylic acid pathway only, 5 genes were related to the phthalic acid pathway only, 8 genes were common in both the salicylic acid and phthalic acid pathways, and 1 gene was related to the gentisic acid pathway. P. plecoglossicida 2P was applied in a two-phase partition bioreactor (TPPB) to degrade naphthalene in wastewater. The optimal operating conditions of the reactor were obtained through response surface optimization: initial naphthalene concentration (C<sub>0</sub>) =1600 mg/L, bacterial liquid concentration (OD<sub>600</sub>) = 1.3, and polymer-to-wastewater mass ratio (PWR) = 2%. Under these conditions, the naphthalene degradation rate was 98.36% at 24 h. The degradation kinetics were fitted using the Haldane equation with a high coefficient of determination (R<sup>2</sup>=0.94). The present study laid foundations for naphthalene degradation mechanism of genus Pseudomonas and its potential application in TPPB.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General and Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2323/jgam.2024.07.003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Naphthalene is a persistent environmental pollutant for its potential teratogenic, carcinogenic and mutagenic effects. In this study, 10 strains of bacteria capable of degrading naphthalene were isolated from crude-oil contaminated soil. Among them, Pseudomonas plecoglossicida 2P exhibited prominent growth with 1000 mg/L naphthalene as the sole carbon source and degraded 94.15% of naphthalene in 36 h. Whole genome sequencing analysis showed that P. plecoglossicida 2P had a total of 22 genes related to naphthalene degradation, of which 8 genes were related to the salicylic acid pathway only, 5 genes were related to the phthalic acid pathway only, 8 genes were common in both the salicylic acid and phthalic acid pathways, and 1 gene was related to the gentisic acid pathway. P. plecoglossicida 2P was applied in a two-phase partition bioreactor (TPPB) to degrade naphthalene in wastewater. The optimal operating conditions of the reactor were obtained through response surface optimization: initial naphthalene concentration (C0) =1600 mg/L, bacterial liquid concentration (OD600) = 1.3, and polymer-to-wastewater mass ratio (PWR) = 2%. Under these conditions, the naphthalene degradation rate was 98.36% at 24 h. The degradation kinetics were fitted using the Haldane equation with a high coefficient of determination (R2=0.94). The present study laid foundations for naphthalene degradation mechanism of genus Pseudomonas and its potential application in TPPB.

萘降解细菌的分离与鉴定及其在两相分离生物反应器中的应用
萘是一种持久性环境污染物,具有潜在的致畸、致癌和致突变作用。本研究从原油污染的土壤中分离出 10 株能够降解萘的细菌。其中,Pseudomonas plecoglossicida 2P 在以 1000 mg/L 萘为唯一碳源的条件下表现出突出的生长能力,在 36 小时内降解了 94.15% 的萘。plecoglossicida 2P 共有 22 个与萘降解相关的基因,其中 8 个基因仅与水杨酸途径相关,5 个基因仅与邻苯二甲酸途径相关,8 个基因在水杨酸和邻苯二甲酸途径中都有,1 个基因与庆大霉素途径相关。在两相分区生物反应器(TPPB)中应用褶曲藻 2P 降解废水中的萘。通过响应面优化获得了反应器的最佳运行条件:初始萘浓度(C0)=1600 mg/L,菌液浓度(OD600)=1.3,聚合物与废水的质量比(PWR)=2%。在这些条件下,24 小时内萘的降解率为 98.36%。降解动力学采用 Haldane 方程拟合,确定系数较高(R2=0.94)。本研究为假单胞菌属的萘降解机制及其在 TPPB 中的潜在应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of General and Applied Microbiology
Journal of General and Applied Microbiology 生物-生物工程与应用微生物
CiteScore
2.40
自引率
0.00%
发文量
42
审稿时长
6-12 weeks
期刊介绍: JGAM is going to publish scientific reports containing novel and significant microbiological findings, which are mainly devoted to the following categories: Antibiotics and Secondary Metabolites; Biotechnology and Metabolic Engineering; Developmental Microbiology; Environmental Microbiology and Bioremediation; Enzymology; Eukaryotic Microbiology; Evolution and Phylogenetics; Genome Integrity and Plasticity; Microalgae and Photosynthesis; Microbiology for Food; Molecular Genetics; Physiology and Cell Surface; Synthetic and Systems Microbiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信