A one-stop integrated natural antimicrobial microneedles with anti-inflammatory, pro-angiogenic and long-term moisturizing properties to accelerate diabetic wound healing
Aili Wang , Xi Ruan , Xuejiao Wang , Yuyu Ren , Chunjiao Shen , Kaiyi Zhang , Zhenjie Song , Bai Xiang , Yinling Ma , Feng Zhao
{"title":"A one-stop integrated natural antimicrobial microneedles with anti-inflammatory, pro-angiogenic and long-term moisturizing properties to accelerate diabetic wound healing","authors":"Aili Wang , Xi Ruan , Xuejiao Wang , Yuyu Ren , Chunjiao Shen , Kaiyi Zhang , Zhenjie Song , Bai Xiang , Yinling Ma , Feng Zhao","doi":"10.1016/j.ejpb.2024.114448","DOIUrl":null,"url":null,"abstract":"<div><p>Diabetic ulcers present a formidable obstacle in diabetes management, typically leading to high mortality and amputation <span><span>rates. To</span><svg><path></path></svg></span> overcome traditional monotherapy drawbacks, We developed a novel microneedle strategy for combined antimicrobial action: ingeniously integrating quercetin with Platelet-derived Growth Factor-BB(PDGF-BB) and Sucrose Octasulfate(SOS) into the microneedle system(QPS MN). This method allows to penetrate through biofilms, administering quercetin nanocrystals and PDGF-BB deep into the tissue to combat microbial infection, mitigate inflammation, and promote angiogenesis. The accompanying backing material contains SOS, which absorbs wound exudate and forms a dressing that provides a moist environment for wound healing In an in vitro wound-scratch assay demonstrated that co-cultivating Human Umbilical Vein Endothelial Cells(HUVEC) with QPS MN for 48 h (90.3 ± 2.51 %) significantly enhanced cell migration compared to the control group (20.2 ± 1.41 %). Moreover, treatment of streptozotocin-induced diabetic wounds in rats with QPS MN for 14 days resulted in a wound healing rate of 96.56 ± 3.44 %, far surpassing the healing rate of only 40.34 ± 7.26 % observed in the untreated control group. Furthermore, the QPS MN treated wounds exhibited a notable increase in skin appendages and neovascularisation, indicating promising potential for achieving complete wound healing. These results suggest that QPS MN may offer substantial therapeutic benefits for addressing diabetic wounds.</p></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":"203 ","pages":"Article 114448"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641124002741","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic ulcers present a formidable obstacle in diabetes management, typically leading to high mortality and amputation rates. To overcome traditional monotherapy drawbacks, We developed a novel microneedle strategy for combined antimicrobial action: ingeniously integrating quercetin with Platelet-derived Growth Factor-BB(PDGF-BB) and Sucrose Octasulfate(SOS) into the microneedle system(QPS MN). This method allows to penetrate through biofilms, administering quercetin nanocrystals and PDGF-BB deep into the tissue to combat microbial infection, mitigate inflammation, and promote angiogenesis. The accompanying backing material contains SOS, which absorbs wound exudate and forms a dressing that provides a moist environment for wound healing In an in vitro wound-scratch assay demonstrated that co-cultivating Human Umbilical Vein Endothelial Cells(HUVEC) with QPS MN for 48 h (90.3 ± 2.51 %) significantly enhanced cell migration compared to the control group (20.2 ± 1.41 %). Moreover, treatment of streptozotocin-induced diabetic wounds in rats with QPS MN for 14 days resulted in a wound healing rate of 96.56 ± 3.44 %, far surpassing the healing rate of only 40.34 ± 7.26 % observed in the untreated control group. Furthermore, the QPS MN treated wounds exhibited a notable increase in skin appendages and neovascularisation, indicating promising potential for achieving complete wound healing. These results suggest that QPS MN may offer substantial therapeutic benefits for addressing diabetic wounds.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.