Decreased plasma docosahexaenoic acid concentration in chronic obstructive pulmonary disease patients with pulmonary Hypertension: Findings from human lipidomics and transcriptomics analysis
Lu Wang , Fajiu Li , Shunlian Hu , Yahan Xu , Ziyang Zhu , Wei Qin , Wei Yu , Ying Chen , Tao Wang
{"title":"Decreased plasma docosahexaenoic acid concentration in chronic obstructive pulmonary disease patients with pulmonary Hypertension: Findings from human lipidomics and transcriptomics analysis","authors":"Lu Wang , Fajiu Li , Shunlian Hu , Yahan Xu , Ziyang Zhu , Wei Qin , Wei Yu , Ying Chen , Tao Wang","doi":"10.1016/j.cca.2024.119899","DOIUrl":null,"url":null,"abstract":"<div><p>Oxylipins derived from polyunsaturated fatty acids (PUFAs) are important endogenous signaling molecules, but are little characterized in pulmonary hypertension (PH) due to chronic obstructive pulmonary disease (COPD). In this study, we identified novel plasma oxylipins associated with PH risk in COPD patients. The plasma oxylipin profiles of COPD patients without PH (COPD-noPH) or with PH (COPD-PH) were obtained from discovery and validation cohort, using the process of LC-MS/MS analysis. There was a significant decrease in the plasma levels of both free docosahexaenoic acid (DHA) and DHA-derived oxylipins in the COPD-PH group. The multivariable logistic regression model identified DHA and four DHA-derived oxylipins (13-HDHA, 10-HDHA, 8-HDHA and 16-HDHA) exhibited significant differences between the two groups after adjusting for sex, BMI, FEV1% predicted, and smoking status. The diagnostic value of these metabolites was further evaluated through ROC curve analysis. The transcriptome profiles in peripheral blood mononuclear cells (PBMCs) of COPD-PH patients and COPD-PH patients were detected through high-throughput sequencing. The enrichment analysis revealed that the upregulated differentially expressed genes (DEGs) were highly enriched in the interferon signaling pathway. In addition, DHA supplementation proved that DHA may inhibit the development of pH by reducing the secretion of interferons derived from PBMCs. This conjecture was further confirmed by the higher level of serum interferon-γ and interferon-α2 of COPD-PH patients than that of COPD-noPH patients. The present study highlights that decreased DHA and DHA-derived oxylipins levels are suggestive of a higher risk of pH development in COPD cases.</p></div>","PeriodicalId":10205,"journal":{"name":"Clinica Chimica Acta","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinica Chimica Acta","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009898124021521","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oxylipins derived from polyunsaturated fatty acids (PUFAs) are important endogenous signaling molecules, but are little characterized in pulmonary hypertension (PH) due to chronic obstructive pulmonary disease (COPD). In this study, we identified novel plasma oxylipins associated with PH risk in COPD patients. The plasma oxylipin profiles of COPD patients without PH (COPD-noPH) or with PH (COPD-PH) were obtained from discovery and validation cohort, using the process of LC-MS/MS analysis. There was a significant decrease in the plasma levels of both free docosahexaenoic acid (DHA) and DHA-derived oxylipins in the COPD-PH group. The multivariable logistic regression model identified DHA and four DHA-derived oxylipins (13-HDHA, 10-HDHA, 8-HDHA and 16-HDHA) exhibited significant differences between the two groups after adjusting for sex, BMI, FEV1% predicted, and smoking status. The diagnostic value of these metabolites was further evaluated through ROC curve analysis. The transcriptome profiles in peripheral blood mononuclear cells (PBMCs) of COPD-PH patients and COPD-PH patients were detected through high-throughput sequencing. The enrichment analysis revealed that the upregulated differentially expressed genes (DEGs) were highly enriched in the interferon signaling pathway. In addition, DHA supplementation proved that DHA may inhibit the development of pH by reducing the secretion of interferons derived from PBMCs. This conjecture was further confirmed by the higher level of serum interferon-γ and interferon-α2 of COPD-PH patients than that of COPD-noPH patients. The present study highlights that decreased DHA and DHA-derived oxylipins levels are suggestive of a higher risk of pH development in COPD cases.
期刊介绍:
The Official Journal of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)
Clinica Chimica Acta is a high-quality journal which publishes original Research Communications in the field of clinical chemistry and laboratory medicine, defined as the diagnostic application of chemistry, biochemistry, immunochemistry, biochemical aspects of hematology, toxicology, and molecular biology to the study of human disease in body fluids and cells.
The objective of the journal is to publish novel information leading to a better understanding of biological mechanisms of human diseases, their prevention, diagnosis, and patient management. Reports of an applied clinical character are also welcome. Papers concerned with normal metabolic processes or with constituents of normal cells or body fluids, such as reports of experimental or clinical studies in animals, are only considered when they are clearly and directly relevant to human disease. Evaluation of commercial products have a low priority for publication, unless they are novel or represent a technological breakthrough. Studies dealing with effects of drugs and natural products and studies dealing with the redox status in various diseases are not within the journal''s scope. Development and evaluation of novel analytical methodologies where applicable to diagnostic clinical chemistry and laboratory medicine, including point-of-care testing, and topics on laboratory management and informatics will also be considered. Studies focused on emerging diagnostic technologies and (big) data analysis procedures including digitalization, mobile Health, and artificial Intelligence applied to Laboratory Medicine are also of interest.