{"title":"Assessing the Role of Patient Generation Techniques in Virtual Clinical Trial Outcomes.","authors":"Jana L Gevertz, Joanna R Wares","doi":"10.1007/s11538-024-01345-6","DOIUrl":null,"url":null,"abstract":"<p><p>Virtual clinical trials (VCTs) are growing in popularity as a tool for quantitatively predicting heterogeneous treatment responses across a population. In the context of a VCT, a plausible patient is an instance of a mathematical model with parameter (or attribute) values chosen to reflect features of the disease and response to treatment for that particular patient. A number of techniques have been introduced to determine the set of model parametrizations to include in a virtual patient cohort. These methodologies generally start with a prior distribution for each model parameter and utilize some criteria to determine whether a parameter set sampled from the priors should be included or excluded from the plausible population. No standard technique exists, however, for generating these prior distributions and choosing the inclusion/exclusion criteria. In this work, we rigorously quantify the impact that VCT design choices have on VCT predictions. Rather than use real data and a complex mathematical model, a spatial model of radiotherapy is used to generate simulated patient data and the mathematical model used to describe the patient data is a two-parameter ordinary differential equations model. This controlled setup allows us to isolate the impact of both the prior distribution and the inclusion/exclusion criteria on both the heterogeneity of plausible populations and on predicted treatment response. We find that the prior distribution, rather than the inclusion/exclusion criteria, has a larger impact on the heterogeneity of the plausible population. Yet, the percent of treatment responders in the plausible population was more sensitive to the inclusion/exclusion criteria utilized. This foundational understanding of the role of virtual clinical trial design should help inform the development of future VCTs that use more complex models and real data.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"86 10","pages":"119"},"PeriodicalIF":2.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01345-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Virtual clinical trials (VCTs) are growing in popularity as a tool for quantitatively predicting heterogeneous treatment responses across a population. In the context of a VCT, a plausible patient is an instance of a mathematical model with parameter (or attribute) values chosen to reflect features of the disease and response to treatment for that particular patient. A number of techniques have been introduced to determine the set of model parametrizations to include in a virtual patient cohort. These methodologies generally start with a prior distribution for each model parameter and utilize some criteria to determine whether a parameter set sampled from the priors should be included or excluded from the plausible population. No standard technique exists, however, for generating these prior distributions and choosing the inclusion/exclusion criteria. In this work, we rigorously quantify the impact that VCT design choices have on VCT predictions. Rather than use real data and a complex mathematical model, a spatial model of radiotherapy is used to generate simulated patient data and the mathematical model used to describe the patient data is a two-parameter ordinary differential equations model. This controlled setup allows us to isolate the impact of both the prior distribution and the inclusion/exclusion criteria on both the heterogeneity of plausible populations and on predicted treatment response. We find that the prior distribution, rather than the inclusion/exclusion criteria, has a larger impact on the heterogeneity of the plausible population. Yet, the percent of treatment responders in the plausible population was more sensitive to the inclusion/exclusion criteria utilized. This foundational understanding of the role of virtual clinical trial design should help inform the development of future VCTs that use more complex models and real data.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.