Evaluation of registration-based vs. manual segmentation of rhesus macaque brain MRIs.

IF 2.7 3区 医学 Q1 ANATOMY & MORPHOLOGY
Brain Structure & Function Pub Date : 2024-11-01 Epub Date: 2024-08-13 DOI:10.1007/s00429-024-02848-7
Joey A Charbonneau, Brittany Davis, Erika P Raven, Bhakti Patwardhan, Carson Grebosky, Lucas Halteh, Jeffrey L Bennett, Eliza Bliss-Moreau
{"title":"Evaluation of registration-based vs. manual segmentation of rhesus macaque brain MRIs.","authors":"Joey A Charbonneau, Brittany Davis, Erika P Raven, Bhakti Patwardhan, Carson Grebosky, Lucas Halteh, Jeffrey L Bennett, Eliza Bliss-Moreau","doi":"10.1007/s00429-024-02848-7","DOIUrl":null,"url":null,"abstract":"<p><p>With increasing numbers of magnetic resonance imaging (MRI) datasets becoming publicly available, researchers and clinicians alike have turned to automated methods of segmentation to enable population-level analyses of these data. Although prior research has evaluated the extent to which automated methods recapitulate \"gold standard\" manual segmentation methods in the human brain, such an evaluation has not yet been carried out for segmentation of MRIs of the macaque brain. Macaques offer the important opportunity to bridge gaps between microanatomical studies using invasive methods like tract tracing, neural recordings, and high-resolution histology and non-invasive macroanatomical studies using methods like MRI. As such, it is important to evaluate whether automated tools derive data of sufficient quality from macaque MRIs to bridge these gaps. We tested the relationship between automated registration-based segmentation using an open source and actively maintained NHP imaging analysis pipeline (AFNI) and gold standard manual segmentation of 4 structures (2 cortical: anterior cingulate cortex and insula; 2 subcortical: amygdala and caudate) across 37 rhesus macaques (Macaca mulatta). We identified some variability in the strength of correlation between automated and manual segmentations across neural regions and differences in relationships with demographic variables like age and sex between the two techniques.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"2029-2043"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483197/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-024-02848-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With increasing numbers of magnetic resonance imaging (MRI) datasets becoming publicly available, researchers and clinicians alike have turned to automated methods of segmentation to enable population-level analyses of these data. Although prior research has evaluated the extent to which automated methods recapitulate "gold standard" manual segmentation methods in the human brain, such an evaluation has not yet been carried out for segmentation of MRIs of the macaque brain. Macaques offer the important opportunity to bridge gaps between microanatomical studies using invasive methods like tract tracing, neural recordings, and high-resolution histology and non-invasive macroanatomical studies using methods like MRI. As such, it is important to evaluate whether automated tools derive data of sufficient quality from macaque MRIs to bridge these gaps. We tested the relationship between automated registration-based segmentation using an open source and actively maintained NHP imaging analysis pipeline (AFNI) and gold standard manual segmentation of 4 structures (2 cortical: anterior cingulate cortex and insula; 2 subcortical: amygdala and caudate) across 37 rhesus macaques (Macaca mulatta). We identified some variability in the strength of correlation between automated and manual segmentations across neural regions and differences in relationships with demographic variables like age and sex between the two techniques.

Abstract Image

基于配准的猕猴脑磁共振成像与手动分割的评估。
随着公开的磁共振成像(MRI)数据集越来越多,研究人员和临床医生都开始采用自动分割方法来对这些数据进行群体水平的分析。尽管之前的研究已经评估了自动方法在多大程度上再现了人脑中的 "黄金标准 "手动分割方法,但还没有对猕猴大脑的 MRI 分割进行过这样的评估。猕猴提供了一个重要的机会,可以弥合使用脑道追踪、神经记录和高分辨率组织学等侵入性方法进行的微观解剖学研究与使用核磁共振成像等方法进行的非侵入性宏观解剖学研究之间的差距。因此,评估自动化工具是否能从猕猴核磁共振成像中获得足够高质量的数据来弥补这些差距非常重要。我们测试了 37 只猕猴(Macaca mulatta)中 4 个结构(2 个皮质结构:前扣带皮层和岛叶;2 个皮质下结构:杏仁核和尾状核)的基于配准的自动分割与金标准人工分割之间的关系。我们发现自动和手动分割神经区域的相关性存在一定差异,而且两种技术与年龄和性别等人口统计学变量的关系也存在差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Brain Structure & Function
Brain Structure & Function 医学-解剖学与形态学
CiteScore
6.00
自引率
6.50%
发文量
168
审稿时长
8 months
期刊介绍: Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信