Dadong Deng, Hongtao Wang, Kun Han, Zhenshuang Tang, Xiaoping Li, Xiangdong Liu, Xiaolei Liu, Xinyun Li, Mei Yu
{"title":"A genome-wide association study reveals candidate genes and regulatory regions associated with birth weight in pigs","authors":"Dadong Deng, Hongtao Wang, Kun Han, Zhenshuang Tang, Xiaoping Li, Xiangdong Liu, Xiaolei Liu, Xinyun Li, Mei Yu","doi":"10.1111/age.13468","DOIUrl":null,"url":null,"abstract":"<p>Piglet birth weight is associated with preweaning survival, and its related traits have been included in the breeding program. Thus, understanding its genetic basis is essential. This study identified four birth weight-associated genomic regions on chromosomes 2, 4, 5, and 7 through genome-wide association study analysis in 7286 pigs from three different pure breeds using the FarmCPU model. The genetic and phenotypic variance explained by the four candidate regions is 8.42% and 1.85%, respectively. Twenty-eight candidate genes were detected, of which <i>APPL2</i>, <i>TGFBI</i>, <i>MACROH2A1</i>, and <i>SEC22B</i> have been reported to affect body growth or development. In addition, 21 H3K4me3-enriched peaks overlapped with the birth weight-associated genomic regions were identified by integrating the genome-wide association study results with our previous ChIP-seq and RNA-seq data generated in the pig placenta, a fetal organ relevant to birth weight, and three of the regulatory regions influence <i>TGFBI</i>, <i>MACROH2A1</i>, and <i>SEC22B</i> expression. This study provides new insights into understanding the mechanisms for birth weight. Further investigating the variants in the regulatory regions would help identify the functional variants for birth weight in pigs.</p>","PeriodicalId":7905,"journal":{"name":"Animal genetics","volume":"55 5","pages":"761-765"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal genetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/age.13468","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Piglet birth weight is associated with preweaning survival, and its related traits have been included in the breeding program. Thus, understanding its genetic basis is essential. This study identified four birth weight-associated genomic regions on chromosomes 2, 4, 5, and 7 through genome-wide association study analysis in 7286 pigs from three different pure breeds using the FarmCPU model. The genetic and phenotypic variance explained by the four candidate regions is 8.42% and 1.85%, respectively. Twenty-eight candidate genes were detected, of which APPL2, TGFBI, MACROH2A1, and SEC22B have been reported to affect body growth or development. In addition, 21 H3K4me3-enriched peaks overlapped with the birth weight-associated genomic regions were identified by integrating the genome-wide association study results with our previous ChIP-seq and RNA-seq data generated in the pig placenta, a fetal organ relevant to birth weight, and three of the regulatory regions influence TGFBI, MACROH2A1, and SEC22B expression. This study provides new insights into understanding the mechanisms for birth weight. Further investigating the variants in the regulatory regions would help identify the functional variants for birth weight in pigs.
期刊介绍:
Animal Genetics reports frontline research on immunogenetics, molecular genetics and functional genomics of economically important and domesticated animals. Publications include the study of variability at gene and protein levels, mapping of genes, traits and QTLs, associations between genes and traits, genetic diversity, and characterization of gene or protein expression and control related to phenotypic or genetic variation.
The journal publishes full-length articles, short communications and brief notes, as well as commissioned and submitted mini-reviews on issues of interest to Animal Genetics readers.