Assessment of cranial reconstruction utilizing various implant materials: finite element study

IF 4.2 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Yomna H. Shash
{"title":"Assessment of cranial reconstruction utilizing various implant materials: finite element study","authors":"Yomna H. Shash","doi":"10.1007/s10856-024-06816-9","DOIUrl":null,"url":null,"abstract":"<div><p>The human head can sometimes experience impact loads that result in skull fractures or other injuries, leading to the need for a craniectomy. Cranioplasty is a procedure that involves replacing the removed portion with either autologous bone or alloplastic material. While titanium has traditionally been the preferred material for cranial implants due to its excellent properties and biocompatibility, its limitations have prompted the search for alternative materials. This research aimed to explore alternative materials to titanium for cranial implants in order to address the limitations of titanium implants and improve the performance of the cranioplasty process. A 3D model of a defective skull was reconstructed with a cranial implant, and the implant was simulated using various stiff and soft materials (such as alumina, zirconia, hydroxyapatite, zirconia-reinforced PMMA, and PMMA) as alternatives to titanium under 2000N impact forces. Alumina and zirconia implants were found to reduce stresses and strains on the skull and brain compared to titanium implants. However, PMMA implants showed potential for causing skull damage under current loading conditions. Additionally, PMMA and hydroxyapatite implants were prone to fracture. Despite these findings, none of the implants exceeded the limits for tensile and compressive stresses and strains on the brain. Zirconia-reinforced PMMA implants were also shown to reduce stresses and strains on the skull and brain compared to PMMA implants. Alumina and zirconia show promise as alternatives to titanium for the production of cranial implants. The use of alternative implant materials to titanium has the potential to enhance the success of cranial reconstruction by overcoming the limitations associated with titanium implants.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"35 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322413/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-024-06816-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The human head can sometimes experience impact loads that result in skull fractures or other injuries, leading to the need for a craniectomy. Cranioplasty is a procedure that involves replacing the removed portion with either autologous bone or alloplastic material. While titanium has traditionally been the preferred material for cranial implants due to its excellent properties and biocompatibility, its limitations have prompted the search for alternative materials. This research aimed to explore alternative materials to titanium for cranial implants in order to address the limitations of titanium implants and improve the performance of the cranioplasty process. A 3D model of a defective skull was reconstructed with a cranial implant, and the implant was simulated using various stiff and soft materials (such as alumina, zirconia, hydroxyapatite, zirconia-reinforced PMMA, and PMMA) as alternatives to titanium under 2000N impact forces. Alumina and zirconia implants were found to reduce stresses and strains on the skull and brain compared to titanium implants. However, PMMA implants showed potential for causing skull damage under current loading conditions. Additionally, PMMA and hydroxyapatite implants were prone to fracture. Despite these findings, none of the implants exceeded the limits for tensile and compressive stresses and strains on the brain. Zirconia-reinforced PMMA implants were also shown to reduce stresses and strains on the skull and brain compared to PMMA implants. Alumina and zirconia show promise as alternatives to titanium for the production of cranial implants. The use of alternative implant materials to titanium has the potential to enhance the success of cranial reconstruction by overcoming the limitations associated with titanium implants.

Graphical Abstract

Abstract Image

利用各种植入材料进行颅骨重建的评估:有限元研究。
人的头部有时会受到冲击负荷,导致颅骨骨折或其他损伤,从而需要进行颅骨切除术。颅骨成形术是一种用自体骨或异体材料替代切除部分的手术。虽然钛因其优异的性能和生物相容性一直是颅骨植入物的首选材料,但其局限性促使人们寻找替代材料。本研究旨在探索用于颅骨植入物的钛替代材料,以解决钛植入物的局限性,提高颅骨成形术的性能。研究人员用颅骨植入体重建了一个有缺陷的颅骨三维模型,并使用各种软硬材料(如氧化铝、氧化锆、羟基磷灰石、氧化锆增强聚甲基丙烯酸甲酯和聚甲基丙烯酸甲酯)模拟了植入体在 2000N 冲击力下替代钛的情况。与钛植入物相比,氧化铝和氧化锆植入物可减少头骨和大脑的应力和应变。不过,PMMA 植入物显示在当前加载条件下有可能造成颅骨损伤。此外,PMMA 和羟基磷灰石植入物容易发生断裂。尽管有这些发现,但没有一个植入物超过大脑的拉伸和压缩应力和应变极限。与 PMMA 植入体相比,氧化锆增强 PMMA 植入体还能减少头骨和大脑的应力和应变。氧化铝和氧化锆有望成为钛的替代品,用于生产颅骨植入物。使用钛的替代植入体材料有可能克服钛植入体的局限性,从而提高颅骨重建的成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science: Materials in Medicine
Journal of Materials Science: Materials in Medicine 工程技术-材料科学:生物材料
CiteScore
8.00
自引率
0.00%
发文量
73
审稿时长
3.5 months
期刊介绍: The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信