Simultaneous Structural and Electronic Engineering on Bi- and Rh-co-doped SrTiO3 for Promoting Photocatalytic Water Splitting.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Angewandte Chemie International Edition Pub Date : 2025-01-10 Epub Date: 2024-10-16 DOI:10.1002/anie.202414628
Zhenhua Pan, Junie Jhon M Vequizo, Hiroaki Yoshida, Jianuo Li, Xiaoshan Zheng, Chiheng Chu, Qian Wang, Mengdie Cai, Song Sun, Kenji Katayama, Akira Yamakata, Kazunari Domen
{"title":"Simultaneous Structural and Electronic Engineering on Bi- and Rh-co-doped SrTiO<sub>3</sub> for Promoting Photocatalytic Water Splitting.","authors":"Zhenhua Pan, Junie Jhon M Vequizo, Hiroaki Yoshida, Jianuo Li, Xiaoshan Zheng, Chiheng Chu, Qian Wang, Mengdie Cai, Song Sun, Kenji Katayama, Akira Yamakata, Kazunari Domen","doi":"10.1002/anie.202414628","DOIUrl":null,"url":null,"abstract":"<p><p>Activating metal ion-doped oxides as visible-light-responsive photocatalysts requires intricate structural and electronic engineering, a task with inherent challenges. In this study, we employed a solid (template)-molten (dopants) reaction to synthesize Bi- and Rh-codoped SrTiO<sub>3</sub> (SrTiO<sub>3</sub> : Bi,Rh) particles. Our investigation reveals that SrTiO<sub>3</sub> : Bi,Rh manifests as single-crystalline particles in a core (undoped)/shell (doped) structure. Furthermore, it exhibits a well-stabilized Rh<sup>3+</sup> energy state for visible-light response without introducing undesirable trapping states. This precisely engineered structure and electronic configuration promoted the generation of high-concentration and long-lived free electrons, as well as facilitated their transfer to cocatalysts for H<sub>2</sub> evolution. Impressively, SrTiO<sub>3</sub> : Bi,Rh achieved an exceptional apparent quantum yield (AQY) of 18.9 % at 420 nm, setting a new benchmark among Rh-doped-based SrTiO<sub>3</sub> materials. Furthermore, when integrated into an all-solid-state Z-Scheme system with Mo-doped BiVO<sub>4</sub> and reduced graphene oxide, SrTiO<sub>3</sub> : Bi,Rh enabled water splitting with an AQY of 7.1 % at 420 nm. This work underscores the significance of simultaneous structural and electronic engineering and introduces the solid-molten reaction as a viable approach for this purpose.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202414628"},"PeriodicalIF":16.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202414628","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Activating metal ion-doped oxides as visible-light-responsive photocatalysts requires intricate structural and electronic engineering, a task with inherent challenges. In this study, we employed a solid (template)-molten (dopants) reaction to synthesize Bi- and Rh-codoped SrTiO3 (SrTiO3 : Bi,Rh) particles. Our investigation reveals that SrTiO3 : Bi,Rh manifests as single-crystalline particles in a core (undoped)/shell (doped) structure. Furthermore, it exhibits a well-stabilized Rh3+ energy state for visible-light response without introducing undesirable trapping states. This precisely engineered structure and electronic configuration promoted the generation of high-concentration and long-lived free electrons, as well as facilitated their transfer to cocatalysts for H2 evolution. Impressively, SrTiO3 : Bi,Rh achieved an exceptional apparent quantum yield (AQY) of 18.9 % at 420 nm, setting a new benchmark among Rh-doped-based SrTiO3 materials. Furthermore, when integrated into an all-solid-state Z-Scheme system with Mo-doped BiVO4 and reduced graphene oxide, SrTiO3 : Bi,Rh enabled water splitting with an AQY of 7.1 % at 420 nm. This work underscores the significance of simultaneous structural and electronic engineering and introduces the solid-molten reaction as a viable approach for this purpose.

促进光催化水分离的双掺杂和铑掺杂 SrTiO3 的同步结构和电子工程。
将掺杂金属离子的氧化物活化为可见光响应型光催化剂需要复杂的结构和电子工程,这是一项具有内在挑战性的任务。在本研究中,我们采用固态(模板)-熔融(掺杂剂)反应合成了掺杂铋和铑的 SrTiO3(SrTiO3:Bi,Rh)颗粒。我们的研究发现,SrTiO3:Bi,Rh 表现为核(未掺杂)/壳(掺杂)结构的单晶颗粒。此外,它在不引入不良捕获态的情况下,表现出良好稳定的 Rh3+ 能态,从而实现了可见光响应。这种精确设计的结构和电子构型促进了高浓度和长寿命自由电子的产生,并有利于它们转移到共催化剂中进行 H2 演化。令人印象深刻的是,SrTiO3:Bi,Rh 在 420 纳米波长下的表观量子产率(AQY)达到了 18.9%,在掺杂 Rh 的 SrTiO3 材料中树立了新的标杆。此外,当将 SrTiO3:Bi,Rh 与掺杂 Mo 的 BiVO4 和还原氧化石墨烯整合到全固态 Z 型体系中时,SrTiO3:Bi,Rh 在 420 纳米波长下的表观量子产率为 7.1%,实现了水分离。这项工作强调了同时进行结构和电子工程的重要性,并介绍了固体熔融反应是实现这一目的的可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信