{"title":"Sustainable pathways for biomass production and utilization in carbon capture and storage—a review","authors":"Denzel Christopher Makepa, Chido Hermes Chihobo","doi":"10.1007/s13399-024-06010-5","DOIUrl":null,"url":null,"abstract":"<p>The urgency to mitigate greenhouse gas emissions has catalyzed interest in sustainable biomass production and utilization coupled with carbon capture and storage (CCS). This review explores diverse facets of biomass production, encompassing dedicated energy crops, agricultural residues, and forest residues, along with sustainable production practices and land management strategies. Technological advancements aimed at enhancing biomass yields, including precision agriculture, genetic engineering, and advanced processing technologies, are examined. Thermochemical methods (gasification, pyrolysis) and biochemical methods (anaerobic digestion, fermentation) for biomass conversion are detailed, highlighting their roles in biomass utilization. Integrated biorefineries are emphasized for maximizing biomass efficiency. The review thoroughly covers CCS, including CO<sub>2</sub> capture and transport advancements, innovative storage solutions, and challenges in implementation. Bioenergy with carbon capture and storage (BECCS) strategies for achieving negative emissions are discussed, with insights from case studies like the BIO-CAP-UK project and initiatives in New South Wales, Australia. This review provides a comprehensive overview of sustainable biomass pathways and their critical role in CCS, offering insights into current technologies, limitations, and concluding with implications for climate change mitigation strategies.</p>","PeriodicalId":488,"journal":{"name":"Biomass Conversion and Biorefinery","volume":"142 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass Conversion and Biorefinery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13399-024-06010-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The urgency to mitigate greenhouse gas emissions has catalyzed interest in sustainable biomass production and utilization coupled with carbon capture and storage (CCS). This review explores diverse facets of biomass production, encompassing dedicated energy crops, agricultural residues, and forest residues, along with sustainable production practices and land management strategies. Technological advancements aimed at enhancing biomass yields, including precision agriculture, genetic engineering, and advanced processing technologies, are examined. Thermochemical methods (gasification, pyrolysis) and biochemical methods (anaerobic digestion, fermentation) for biomass conversion are detailed, highlighting their roles in biomass utilization. Integrated biorefineries are emphasized for maximizing biomass efficiency. The review thoroughly covers CCS, including CO2 capture and transport advancements, innovative storage solutions, and challenges in implementation. Bioenergy with carbon capture and storage (BECCS) strategies for achieving negative emissions are discussed, with insights from case studies like the BIO-CAP-UK project and initiatives in New South Wales, Australia. This review provides a comprehensive overview of sustainable biomass pathways and their critical role in CCS, offering insights into current technologies, limitations, and concluding with implications for climate change mitigation strategies.
期刊介绍:
Biomass Conversion and Biorefinery presents articles and information on research, development and applications in thermo-chemical conversion; physico-chemical conversion and bio-chemical conversion, including all necessary steps for the provision and preparation of the biomass as well as all possible downstream processing steps for the environmentally sound and economically viable provision of energy and chemical products.