Aman Santoso, Amalia Bella Saputri, Evilia Wahyuning, Sumari Sumari, Eli Hendrik Sanjaya, Muntholib Muntholib
{"title":"Castor biogasoline via catalytic cracking over activated Ni–Zn/activated natural zeolite catalyst","authors":"Aman Santoso, Amalia Bella Saputri, Evilia Wahyuning, Sumari Sumari, Eli Hendrik Sanjaya, Muntholib Muntholib","doi":"10.1007/s11144-024-02701-2","DOIUrl":null,"url":null,"abstract":"<div><p>Synthesizing biogasoline from castor oil was catalyzed by Activated Natural Zeolite (ANZ) catalyst modified Ni and Zn metals in batch-cracking reactor. The process was affected by the modified catalyst on variation of Ni:Zn ratio (1:1, 1:2, and 2:1) at the calcination temperature of 500 °C, and variation of the calcination temperature (500, 600, and 700 °C) At Ni–Zn (1:1). After characterizations and analysis, the higher the calcination temperature, the lower the acidity of the catalyst caused the resulting yield also decreases. The density of the product obtained ranged from 0.765–0.83 g/mL, the viscosity ranged from 1.42–1.95, the refractive index was 1.421–1.431, and the calorific value tested on the cracking product with Ni:Zn (1:1) (500 °C) Fraction I, Fraction II, and Fraction III were 0.9966 kcal/kg, 0.9068 kcal/kg, and 0.8755 kcal/kg, respectively. The results of FTIR and GC–MS showed that the composition of the catalytic cracking product was composed of C<sub>6</sub>–C<sub>14</sub> hydrocarbons consisting of aldehydes, alkanes, alkenes, and carboxylic acids. The composition was dominated by biogasoline compounds (C<sub>5</sub>–C<sub>12</sub>).</p></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"137 6","pages":"3205 - 3225"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11144-024-02701-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Synthesizing biogasoline from castor oil was catalyzed by Activated Natural Zeolite (ANZ) catalyst modified Ni and Zn metals in batch-cracking reactor. The process was affected by the modified catalyst on variation of Ni:Zn ratio (1:1, 1:2, and 2:1) at the calcination temperature of 500 °C, and variation of the calcination temperature (500, 600, and 700 °C) At Ni–Zn (1:1). After characterizations and analysis, the higher the calcination temperature, the lower the acidity of the catalyst caused the resulting yield also decreases. The density of the product obtained ranged from 0.765–0.83 g/mL, the viscosity ranged from 1.42–1.95, the refractive index was 1.421–1.431, and the calorific value tested on the cracking product with Ni:Zn (1:1) (500 °C) Fraction I, Fraction II, and Fraction III were 0.9966 kcal/kg, 0.9068 kcal/kg, and 0.8755 kcal/kg, respectively. The results of FTIR and GC–MS showed that the composition of the catalytic cracking product was composed of C6–C14 hydrocarbons consisting of aldehydes, alkanes, alkenes, and carboxylic acids. The composition was dominated by biogasoline compounds (C5–C12).
期刊介绍:
Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields:
-kinetics of homogeneous reactions in gas, liquid and solid phase;
-Homogeneous catalysis;
-Heterogeneous catalysis;
-Adsorption in heterogeneous catalysis;
-Transport processes related to reaction kinetics and catalysis;
-Preparation and study of catalysts;
-Reactors and apparatus.
Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.