{"title":"Stability of a continuous/discrete sensitivity model for the Navier–Stokes equations","authors":"N. Nouaime, B. Després, M. A. Puscas, C. Fiorini","doi":"10.1002/fld.5324","DOIUrl":null,"url":null,"abstract":"<p>This work presents a comprehensive framework for the sensitivity analysis of the Navier–Stokes equations, with an emphasis on the stability estimate of the discretized first-order sensitivity of the Navier–Stokes equations. The first-order sensitivity of the Navier–Stokes equations is defined using the polynomial chaos method, and a finite element-volume numerical scheme for the Navier–Stokes equations is suggested. This numerical method is integrated into the open-source industrial code TrioCFD developed by the CEA. The finite element-volume discretization is extended to the first-order sensitivity Navier–Stokes equations, and the most significant and original point is the discretization of the nonlinear term. A stability estimate for continuous and discrete Navier–Stokes equations is established. Finally, numerical tests are presented to evaluate the polynomial chaos method and to compare it to the Monte Carlo and Taylor expansion methods.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 12","pages":"1883-1909"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fld.5324","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Fluids","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fld.5324","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a comprehensive framework for the sensitivity analysis of the Navier–Stokes equations, with an emphasis on the stability estimate of the discretized first-order sensitivity of the Navier–Stokes equations. The first-order sensitivity of the Navier–Stokes equations is defined using the polynomial chaos method, and a finite element-volume numerical scheme for the Navier–Stokes equations is suggested. This numerical method is integrated into the open-source industrial code TrioCFD developed by the CEA. The finite element-volume discretization is extended to the first-order sensitivity Navier–Stokes equations, and the most significant and original point is the discretization of the nonlinear term. A stability estimate for continuous and discrete Navier–Stokes equations is established. Finally, numerical tests are presented to evaluate the polynomial chaos method and to compare it to the Monte Carlo and Taylor expansion methods.
期刊介绍:
The International Journal for Numerical Methods in Fluids publishes refereed papers describing significant developments in computational methods that are applicable to scientific and engineering problems in fluid mechanics, fluid dynamics, micro and bio fluidics, and fluid-structure interaction. Numerical methods for solving ancillary equations, such as transport and advection and diffusion, are also relevant. The Editors encourage contributions in the areas of multi-physics, multi-disciplinary and multi-scale problems involving fluid subsystems, verification and validation, uncertainty quantification, and model reduction.
Numerical examples that illustrate the described methods or their accuracy are in general expected. Discussions of papers already in print are also considered. However, papers dealing strictly with applications of existing methods or dealing with areas of research that are not deemed to be cutting edge by the Editors will not be considered for review.
The journal publishes full-length papers, which should normally be less than 25 journal pages in length. Two-part papers are discouraged unless considered necessary by the Editors.