Dynamic Fault Tolerance Approach for Network-on-Chip Architecture

IF 3.7 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Kasem Khalil;Ashok Kumar;Magdy Bayoumi
{"title":"Dynamic Fault Tolerance Approach for Network-on-Chip Architecture","authors":"Kasem Khalil;Ashok Kumar;Magdy Bayoumi","doi":"10.1109/JETCAS.2024.3438250","DOIUrl":null,"url":null,"abstract":"Network-on-Chip (NoC) architecture provides speed-efficient and scalable communication in complex integrated circuits. Attaining fault tolerance in NoC architectures is an ongoing research problem aiming to enhance the architecture’s reliability and performance. It seeks to mitigate the impact of router failures and enhance the overall system robustness. Fault tolerance is achieved by adding additional hardware, and the research challenge is to attain high reliability, high Mean Time To Failure (MTTF), and low Energy-Delay-Product (EDP) while sacrificing an acceptable area. It is particularly vital for applications with uninterrupted data flow. This paper proposes a fault-tolerance approach for NoC systems focusing on NoC routers to yield increased reliability and MTTF with an acceptable area overhead and low EDP. The proposed method proposes a dynamic reconfiguration mechanism by using a dynamic allocation of virtual channels and a bypass crossbar mechanism, ensuring uninterrupted data flow within the NoC. Evaluations of the proposed method are done on different mesh sizes using VHDL and an Altera 10GX FPGA, demonstrating the method’s superiority in reliability, reduced latency, and enhanced throughput. The results show that the proposed method has an acceptable area overhead of 25.3%, and its MTTF values are 3.7 times to 18 times higher than the traditional methods for varying network sizes, showing remarkable robustness against faults. The results show that the proposed method attains the best-reported reliability with the least EDP. Additionally, a layout of the circuit is also created and studied.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10623515/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Network-on-Chip (NoC) architecture provides speed-efficient and scalable communication in complex integrated circuits. Attaining fault tolerance in NoC architectures is an ongoing research problem aiming to enhance the architecture’s reliability and performance. It seeks to mitigate the impact of router failures and enhance the overall system robustness. Fault tolerance is achieved by adding additional hardware, and the research challenge is to attain high reliability, high Mean Time To Failure (MTTF), and low Energy-Delay-Product (EDP) while sacrificing an acceptable area. It is particularly vital for applications with uninterrupted data flow. This paper proposes a fault-tolerance approach for NoC systems focusing on NoC routers to yield increased reliability and MTTF with an acceptable area overhead and low EDP. The proposed method proposes a dynamic reconfiguration mechanism by using a dynamic allocation of virtual channels and a bypass crossbar mechanism, ensuring uninterrupted data flow within the NoC. Evaluations of the proposed method are done on different mesh sizes using VHDL and an Altera 10GX FPGA, demonstrating the method’s superiority in reliability, reduced latency, and enhanced throughput. The results show that the proposed method has an acceptable area overhead of 25.3%, and its MTTF values are 3.7 times to 18 times higher than the traditional methods for varying network sizes, showing remarkable robustness against faults. The results show that the proposed method attains the best-reported reliability with the least EDP. Additionally, a layout of the circuit is also created and studied.
片上网络架构的动态容错方法
片上网络(NoC)架构可在复杂的集成电路中提供快速高效和可扩展的通信。在 NoC 架构中实现容错是一个持续研究的问题,目的是提高架构的可靠性和性能。它旨在减轻路由器故障的影响,提高整个系统的鲁棒性。容错是通过添加额外的硬件来实现的,而研究的挑战是在牺牲可接受的面积的同时,实现高可靠性、高平均故障时间(MTTF)和低能量-延迟-产品(EDP)。这对于需要不间断数据流的应用尤为重要。本文针对 NoC 系统提出了一种容错方法,重点关注 NoC 路由器,以提高可靠性和 MTTF,同时实现可接受的面积开销和低 EDP。所提出的方法通过使用虚拟通道的动态分配和旁路交叉条机制,提出了一种动态重新配置机制,以确保 NoC 内的数据流不中断。使用 VHDL 和 Altera 10GX FPGA 在不同网格尺寸上对所提方法进行了评估,证明了该方法在可靠性、降低延迟和提高吞吐量方面的优越性。结果表明,所提方法的面积开销为 25.3%,是可以接受的,而且在不同的网络规模下,其 MTTF 值是传统方法的 3.7 倍至 18 倍,显示了对故障的显著鲁棒性。结果表明,所提出的方法以最小的 EDP 达到了最佳的可靠性。此外,还创建并研究了电路布局。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
2.20%
发文量
86
期刊介绍: The IEEE Journal on Emerging and Selected Topics in Circuits and Systems is published quarterly and solicits, with particular emphasis on emerging areas, special issues on topics that cover the entire scope of the IEEE Circuits and Systems (CAS) Society, namely the theory, analysis, design, tools, and implementation of circuits and systems, spanning their theoretical foundations, applications, and architectures for signal and information processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信