{"title":"Space‐resolved gas temperature of a microwave plasma torch used for hydrogen production via methane pyrolysis","authors":"Simon Kreuznacht, Marc Böke, Achim von Keudell","doi":"10.1002/ppap.202400089","DOIUrl":null,"url":null,"abstract":"Pyrolysis of methane is a promising, new, greenhouse gas‐free production method of hydrogen. Here, we present optical emission spectra of a microwave plasma torch operated in an argon–methane mixture. Detailed spatial resolution is achieved by means of Abel inversion. The emission spectra are dominated by dicarbon Swan bands and black body radiation from carbon nanoparticles. Both spectral features are utilized to estimate the gas temperature. In the center of the plasma, gas temperatures of up to 4300 K are reached with large gradients (500 Kmm<jats:sup>‐1</jats:sup>) in the radial direction. The thermal equilibrium chemistry and the kinetics of methane pyrolysis are analyzed to explain the observed coupling between the local gas temperature and the local emission.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"40 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202400089","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Pyrolysis of methane is a promising, new, greenhouse gas‐free production method of hydrogen. Here, we present optical emission spectra of a microwave plasma torch operated in an argon–methane mixture. Detailed spatial resolution is achieved by means of Abel inversion. The emission spectra are dominated by dicarbon Swan bands and black body radiation from carbon nanoparticles. Both spectral features are utilized to estimate the gas temperature. In the center of the plasma, gas temperatures of up to 4300 K are reached with large gradients (500 Kmm‐1) in the radial direction. The thermal equilibrium chemistry and the kinetics of methane pyrolysis are analyzed to explain the observed coupling between the local gas temperature and the local emission.
期刊介绍:
Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.