Xiaobo Zhu, Yan Wu, Jin Che, Chao Wang, Liying Wang and Zhanheng Chen
{"title":"Multi-perspective feedback-attention coupling model for continuous-time dynamic graphs","authors":"Xiaobo Zhu, Yan Wu, Jin Che, Chao Wang, Liying Wang and Zhanheng Chen","doi":"10.1088/2632-2153/ad66af","DOIUrl":null,"url":null,"abstract":"Representation learning over graph networks has recently gained popularity, with many models showing promising results. However, several challenges remain: (1) most methods are designed for static or discrete-time dynamic graphs; (2) existing continuous-time dynamic graph algorithms focus on a single evolving perspective; and (3) many continuous-time dynamic graph approaches necessitate numerous temporal neighbors to capture long-term dependencies. In response, this paper introduces a Multi-Perspective Feedback-Attention Coupling (MPFA) model. MPFA incorporates information from both evolving and original perspectives to effectively learn the complex dynamics of dynamic graph evolution processes. The evolving perspective considers the current state of historical interaction events of nodes and uses a temporal attention module to aggregate current state information. This perspective also makes it possible to capture long-term dependencies of nodes using a small number of temporal neighbors. Meanwhile, the original perspective utilizes a feedback attention module with growth characteristic coefficients to aggregate the original state information of node interactions. Experimental results on one dataset organized by ourselves and seven public datasets validate the effectiveness and competitiveness of our proposed model.","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"14 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad66af","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Representation learning over graph networks has recently gained popularity, with many models showing promising results. However, several challenges remain: (1) most methods are designed for static or discrete-time dynamic graphs; (2) existing continuous-time dynamic graph algorithms focus on a single evolving perspective; and (3) many continuous-time dynamic graph approaches necessitate numerous temporal neighbors to capture long-term dependencies. In response, this paper introduces a Multi-Perspective Feedback-Attention Coupling (MPFA) model. MPFA incorporates information from both evolving and original perspectives to effectively learn the complex dynamics of dynamic graph evolution processes. The evolving perspective considers the current state of historical interaction events of nodes and uses a temporal attention module to aggregate current state information. This perspective also makes it possible to capture long-term dependencies of nodes using a small number of temporal neighbors. Meanwhile, the original perspective utilizes a feedback attention module with growth characteristic coefficients to aggregate the original state information of node interactions. Experimental results on one dataset organized by ourselves and seven public datasets validate the effectiveness and competitiveness of our proposed model.
期刊介绍:
Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.