Wenhao Xu, Gongqin Wang, Shaoda Liu, Junfeng Wang, William H. McDowell, Kangning Huang, Peter A. Raymond, Zhifeng Yang, Xinghui Xia
{"title":"Globally elevated greenhouse gas emissions from polluted urban rivers","authors":"Wenhao Xu, Gongqin Wang, Shaoda Liu, Junfeng Wang, William H. McDowell, Kangning Huang, Peter A. Raymond, Zhifeng Yang, Xinghui Xia","doi":"10.1038/s41893-024-01358-y","DOIUrl":null,"url":null,"abstract":"Cities are at the heart of global anthropogenic greenhouse gas (GHG) emissions, with rivers embedded in urban landscapes as a potentially large yet uncharacterized GHG source. Urban rivers emit GHGs due to excess carbon and nitrogen inputs from urban environments and their watersheds. Here relying on a compiled urban river GHG dataset and robust modelling, we estimated that globally urban rivers emitted annually 1.1, 42.3 and 0.021 Tg CH4, CO2 and N2O, totalling 78.1 ± 3.5 Tg CO2-equivalent (CO2-eq) emissions. Predicted GHG emissions were nearly twofold those from non-urban rivers (~815 versus 414 mmol CO2-eq m−2 d−1) and similar to scope-1 urban emissions in intensity (1,058 mmol CO2-eq m−2 d−1), with particularly higher CH4 and N2O emissions linked to widespread eutrophication and altered carbon and nutrient cycling in urban rivers. Globally, the emissions varied with national income levels with the highest emissions happening in lower–middle-income countries where river pollution control is deficient. These findings highlight the importance of pollution controls in mitigating urban river GHG emissions and ensuring urban sustainability. Cities are a major source of greenhouse gas emissions worldwide, but the potential of urban rivers to such emissions is not well understood. A study now quantifies the greenhouse gas concentrations, fluxes and emissions from urban rivers globally.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"7 7","pages":"938-948"},"PeriodicalIF":25.7000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-024-01358-y","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cities are at the heart of global anthropogenic greenhouse gas (GHG) emissions, with rivers embedded in urban landscapes as a potentially large yet uncharacterized GHG source. Urban rivers emit GHGs due to excess carbon and nitrogen inputs from urban environments and their watersheds. Here relying on a compiled urban river GHG dataset and robust modelling, we estimated that globally urban rivers emitted annually 1.1, 42.3 and 0.021 Tg CH4, CO2 and N2O, totalling 78.1 ± 3.5 Tg CO2-equivalent (CO2-eq) emissions. Predicted GHG emissions were nearly twofold those from non-urban rivers (~815 versus 414 mmol CO2-eq m−2 d−1) and similar to scope-1 urban emissions in intensity (1,058 mmol CO2-eq m−2 d−1), with particularly higher CH4 and N2O emissions linked to widespread eutrophication and altered carbon and nutrient cycling in urban rivers. Globally, the emissions varied with national income levels with the highest emissions happening in lower–middle-income countries where river pollution control is deficient. These findings highlight the importance of pollution controls in mitigating urban river GHG emissions and ensuring urban sustainability. Cities are a major source of greenhouse gas emissions worldwide, but the potential of urban rivers to such emissions is not well understood. A study now quantifies the greenhouse gas concentrations, fluxes and emissions from urban rivers globally.
期刊介绍:
Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions.
Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.