Victor Y. Wang, Max Wenqiang Xu
求助PDF
{"title":"Paucity phenomena for polynomial products","authors":"Victor Y. Wang, Max Wenqiang Xu","doi":"10.1112/blms.13095","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n <mo>∈</mo>\n <mi>Z</mi>\n <mo>[</mo>\n <mi>x</mi>\n <mo>]</mo>\n </mrow>\n <annotation>$P(x)\\in \\mathbb {Z}[x]$</annotation>\n </semantics></math> be a polynomial with at least two distinct complex roots. We prove that the number of solutions <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>x</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mi>⋯</mi>\n <mo>,</mo>\n <msub>\n <mi>x</mi>\n <mi>k</mi>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>y</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mi>⋯</mi>\n <mo>,</mo>\n <msub>\n <mi>y</mi>\n <mi>k</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>∈</mo>\n <msup>\n <mrow>\n <mo>[</mo>\n <mi>N</mi>\n <mo>]</mo>\n </mrow>\n <mrow>\n <mn>2</mn>\n <mi>k</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$(x_1, \\dots, x_k, y_1, \\dots, y_k)\\in [N]^{2k}$</annotation>\n </semantics></math> to the equation\n\n </p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2718-2726"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13095","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
Let
P
(
x
)
∈
Z
[
x
]
$P(x)\in \mathbb {Z}[x]$
be a polynomial with at least two distinct complex roots. We prove that the number of solutions
(
x
1
,
⋯
,
x
k
,
y
1
,
⋯
,
y
k
)
∈
[
N
]
2
k
$(x_1, \dots, x_k, y_1, \dots, y_k)\in [N]^{2k}$
to the equation
多项式积的贫乏现象
让 P ( x ) ∈ Z [ x ] $P(x)\in \mathbb {Z}[x]$ 是一个至少有两个不同复根的多项式。我们证明解的个数 ( x 1 , ⋯ , x k , y 1 , ⋯ , y k ) ∈[N]2k$(x_1, \dots, x_k, y_1, \dots, y_k)\in [N]^{2k}$ 解方程
本文章由计算机程序翻译,如有差异,请以英文原文为准。