Growth of products of subsets in finite simple groups

IF 0.8 3区 数学 Q2 MATHEMATICS
Daniele Dona, Attila Maróti, László Pyber
{"title":"Growth of products of subsets in finite simple groups","authors":"Daniele Dona,&nbsp;Attila Maróti,&nbsp;László Pyber","doi":"10.1112/blms.13093","DOIUrl":null,"url":null,"abstract":"<p>We prove that the product of a subset and a normal subset inside any finite simple non-abelian group <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math> grows rapidly. More precisely, if <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> are two subsets with <span></span><math>\n <semantics>\n <mi>B</mi>\n <annotation>$B$</annotation>\n </semantics></math> normal and neither of them is too large inside <span></span><math>\n <semantics>\n <mi>G</mi>\n <annotation>$G$</annotation>\n </semantics></math>, then <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>|</mo>\n <mi>A</mi>\n <mi>B</mi>\n <mo>|</mo>\n </mrow>\n <mo>⩾</mo>\n <msup>\n <mrow>\n <mo>|</mo>\n <mi>A</mi>\n <mo>|</mo>\n <mo>|</mo>\n <mi>B</mi>\n <mo>|</mo>\n </mrow>\n <mrow>\n <mn>1</mn>\n <mo>−</mo>\n <mi>ε</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$|AB| \\geqslant |A||B|^{1-\\epsilon }$</annotation>\n </semantics></math> where <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\epsilon &amp;gt;0$</annotation>\n </semantics></math> can be taken arbitrarily small. This is a somewhat surprising strengthening of a theorem of Liebeck, Schul, and Shalev.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2704-2710"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13093","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that the product of a subset and a normal subset inside any finite simple non-abelian group G $G$ grows rapidly. More precisely, if A $A$ and B $B$ are two subsets with B $B$ normal and neither of them is too large inside G $G$ , then | A B | | A | | B | 1 ε $|AB| \geqslant |A||B|^{1-\epsilon }$ where ε > 0 $\epsilon &gt;0$ can be taken arbitrarily small. This is a somewhat surprising strengthening of a theorem of Liebeck, Schul, and Shalev.

有限简单群中子集积的增长
我们证明,在任何有限简单非阿贝尔群 G $G$ 内,子集与正常子集的乘积都会快速增长。更确切地说,如果 A $A$ 和 B $B$ 是两个子集,B $B$ 是正常子集,并且它们在 G $G$ 内都不是太大,那么 | A B | | | A | | B | 1 - ε $|AB| \geqslant |A||B|^{1-\epsilon }$ 其中 ε > 0 $\epsilon &gt;0$ 可以任意取小。这是对 Liebeck、Schul 和 Shalev 的一个定理的加强,有点出人意料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信