{"title":"Some results and problems on clique coverings of hypergraphs","authors":"Vojtech Rödl, Marcelo Sales","doi":"10.1002/jgt.23111","DOIUrl":null,"url":null,"abstract":"<p>For a <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-uniform hypergraph <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math> we consider the parameter <span></span><math>\n <semantics>\n <mrow>\n <mi>Θ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Theta }}(F)$</annotation>\n </semantics></math>, the minimum size of a clique cover of the edge set of <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math>. We derive bounds on <span></span><math>\n <semantics>\n <mrow>\n <mi>Θ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>F</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\rm{\\Theta }}(F)$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> $F$</annotation>\n </semantics></math> belonging to various classes of hypergraphs.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23111","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For a -uniform hypergraph we consider the parameter , the minimum size of a clique cover of the edge set of . We derive bounds on for belonging to various classes of hypergraphs.