{"title":"Multilayer Iterative Stochastic Dynamic Programing for Optimal Energy Management of Residential Loads with Electric Vehicles","authors":"Tawfiq M. Aljohani","doi":"10.1155/2024/6842580","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This work introduces a multilayer iterative stochastic dynamic programing (MISDP) framework for optimizing energy management in smart residential settings, incorporating electric vehicles to reduce energy costs while enhancing operational efficiency. The study investigates the complexities of managing residential loads with integrated EV batteries, set against the backdrop of unpredictable charging demands and fluctuating energy prices. The proposed method is designed to optimize charging and discharging schedules, ensuring cost-effective energy consumption without compromising the longevity of EV’s battery operations. The proposed MISDP strategy encompasses multi-iteration processes, both at internal and external levels, that not only highlight the method’s capacity for precise, real-time decision-making but also underscore its adaptability to the dynamic nature of energy systems. The external iteration primarily focuses on adapting to broader operational variables, such as fluctuating prices and demand patterns, setting a framework for optimization. Concurrently, the internal iteration updates the details of EV battery operation, fine-tuning charging and discharging strategies to refine the control law sequence for each operational period, ensuring optimal energy management. Throughout the iteration process, the framework ensures the performance index function remains bounded, adhering strictly to the evolving control law sequence. Through comparative analysis, the MISDP framework is evaluated against different optimization techniques, demonstrating its superior capability in achieving significant energy cost savings and operational effectiveness while ensuring convergence under stochastic conditions.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/6842580","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/6842580","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This work introduces a multilayer iterative stochastic dynamic programing (MISDP) framework for optimizing energy management in smart residential settings, incorporating electric vehicles to reduce energy costs while enhancing operational efficiency. The study investigates the complexities of managing residential loads with integrated EV batteries, set against the backdrop of unpredictable charging demands and fluctuating energy prices. The proposed method is designed to optimize charging and discharging schedules, ensuring cost-effective energy consumption without compromising the longevity of EV’s battery operations. The proposed MISDP strategy encompasses multi-iteration processes, both at internal and external levels, that not only highlight the method’s capacity for precise, real-time decision-making but also underscore its adaptability to the dynamic nature of energy systems. The external iteration primarily focuses on adapting to broader operational variables, such as fluctuating prices and demand patterns, setting a framework for optimization. Concurrently, the internal iteration updates the details of EV battery operation, fine-tuning charging and discharging strategies to refine the control law sequence for each operational period, ensuring optimal energy management. Throughout the iteration process, the framework ensures the performance index function remains bounded, adhering strictly to the evolving control law sequence. Through comparative analysis, the MISDP framework is evaluated against different optimization techniques, demonstrating its superior capability in achieving significant energy cost savings and operational effectiveness while ensuring convergence under stochastic conditions.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system