Ronny Lauerwald, Ana Bastos, Matthew J. McGrath, Ana Maria Roxana Petrescu, François Ritter, Robbie M. Andrew, Antoine Berchet, Grégoire Broquet, Dominik Brunner, Frédéric Chevallier, Alessandro Cescatti, Sara Filipek, Audrey Fortems-Cheiney, Giovanni Forzieri, Pierre Friedlingstein, Richard Fuchs, Christoph Gerbig, Sander Houweling, Piyu Ke, Bas J. W. Lerink, Wanjing Li, Wei Li, Xiaojun Li, Ingrid Luijkx, Guillaume Monteil, Saqr Munassar, Gert-Jan Nabuurs, Prabir K. Patra, Philippe Peylin, Julia Pongratz, Pierre Regnier, Marielle Saunois, Mart-Jan Schelhaas, Marko Scholze, Stephen Sitch, Rona L. Thompson, Hanqin Tian, Aki Tsuruta, Chris Wilson, Jean-Pierre Wigneron, Yitong Yao, Sönke Zaehle, Philippe Ciais
{"title":"Carbon and Greenhouse Gas Budgets of Europe: Trends, Interannual and Spatial Variability, and Their Drivers","authors":"Ronny Lauerwald, Ana Bastos, Matthew J. McGrath, Ana Maria Roxana Petrescu, François Ritter, Robbie M. Andrew, Antoine Berchet, Grégoire Broquet, Dominik Brunner, Frédéric Chevallier, Alessandro Cescatti, Sara Filipek, Audrey Fortems-Cheiney, Giovanni Forzieri, Pierre Friedlingstein, Richard Fuchs, Christoph Gerbig, Sander Houweling, Piyu Ke, Bas J. W. Lerink, Wanjing Li, Wei Li, Xiaojun Li, Ingrid Luijkx, Guillaume Monteil, Saqr Munassar, Gert-Jan Nabuurs, Prabir K. Patra, Philippe Peylin, Julia Pongratz, Pierre Regnier, Marielle Saunois, Mart-Jan Schelhaas, Marko Scholze, Stephen Sitch, Rona L. Thompson, Hanqin Tian, Aki Tsuruta, Chris Wilson, Jean-Pierre Wigneron, Yitong Yao, Sönke Zaehle, Philippe Ciais","doi":"10.1029/2024GB008141","DOIUrl":null,"url":null,"abstract":"<p>In the framework of the RECCAP2 initiative, we present the greenhouse gas (GHG) and carbon (C) budget of Europe. For the decade of the 2010s, we present a bottom-up (BU) estimate of GHG net-emissions of 3.9 Pg CO<sub>2</sub>-eq. yr<sup>−1</sup> (using a global warming potential on a 100 years horizon), which are largely dominated by fossil fuel emissions. In this decade, terrestrial ecosystems acted as a net GHG sink of 0.9 Pg CO<sub>2</sub>-eq. yr<sup>−1</sup>, dominated by a CO<sub>2</sub> sink that was partially counterbalanced by net emissions of CH<sub>4</sub> and N<sub>2</sub>O. For CH<sub>4</sub> and N<sub>2</sub>O, we find good agreement between BU and top-down (TD) estimates from atmospheric inversions. However, our BU land CO<sub>2</sub> sink is significantly higher than the TD estimates. We further show that decadal averages of GHG net-emissions have declined by 1.2 Pg CO<sub>2</sub>-eq. yr<sup>−1</sup> since the 1990s, mainly due to a reduction in fossil fuel emissions. In addition, based on both data driven BU and TD estimates, we also find that the land CO<sub>2</sub> sink has weakened over the past two decades. A large part of the European CO<sub>2</sub> and C sinks is located in Northern Europe. At the same time, we find a decreasing trend in sink strength in Scandinavia, which can be attributed to an increase in forest management intensity. These are partly offset by increasing CO<sub>2</sub> sinks in parts of Eastern Europe and Northern Spain, attributed in part to land use change. Extensive regions of high CH<sub>4</sub> and N<sub>2</sub>O emissions are mainly attributed to agricultural activities and are found in Belgium, the Netherlands and the southern UK. We further analyzed interannual variability in the GHG budgets. The drought year of 2003 shows the highest net-emissions of CO<sub>2</sub> and of all GHGs combined.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 8","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008141","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008141","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In the framework of the RECCAP2 initiative, we present the greenhouse gas (GHG) and carbon (C) budget of Europe. For the decade of the 2010s, we present a bottom-up (BU) estimate of GHG net-emissions of 3.9 Pg CO2-eq. yr−1 (using a global warming potential on a 100 years horizon), which are largely dominated by fossil fuel emissions. In this decade, terrestrial ecosystems acted as a net GHG sink of 0.9 Pg CO2-eq. yr−1, dominated by a CO2 sink that was partially counterbalanced by net emissions of CH4 and N2O. For CH4 and N2O, we find good agreement between BU and top-down (TD) estimates from atmospheric inversions. However, our BU land CO2 sink is significantly higher than the TD estimates. We further show that decadal averages of GHG net-emissions have declined by 1.2 Pg CO2-eq. yr−1 since the 1990s, mainly due to a reduction in fossil fuel emissions. In addition, based on both data driven BU and TD estimates, we also find that the land CO2 sink has weakened over the past two decades. A large part of the European CO2 and C sinks is located in Northern Europe. At the same time, we find a decreasing trend in sink strength in Scandinavia, which can be attributed to an increase in forest management intensity. These are partly offset by increasing CO2 sinks in parts of Eastern Europe and Northern Spain, attributed in part to land use change. Extensive regions of high CH4 and N2O emissions are mainly attributed to agricultural activities and are found in Belgium, the Netherlands and the southern UK. We further analyzed interannual variability in the GHG budgets. The drought year of 2003 shows the highest net-emissions of CO2 and of all GHGs combined.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.