Blowup algebras of determinantal ideals in prime characteristic

IF 1 2区 数学 Q1 MATHEMATICS
Alessandro De Stefani, Jonathan Montaño, Luis Núñez-Betancourt
{"title":"Blowup algebras of determinantal ideals in prime characteristic","authors":"Alessandro De Stefani,&nbsp;Jonathan Montaño,&nbsp;Luis Núñez-Betancourt","doi":"10.1112/jlms.12969","DOIUrl":null,"url":null,"abstract":"<p>We study when blowup algebras are <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-split or strongly <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-regular. Our main focus is on algebras given by symbolic and ordinary powers of ideals of minors of a generic matrix, a symmetric matrix, and a Hankel matrix. We also study ideals of Pfaffians of a skew-symmetric matrix. We use these results to obtain bounds on the degrees of the defining equations for these algebras. We also prove that the limit of the normalized regularity of the symbolic powers of these ideals exists and that their depth stabilizes. Finally, we show that, for determinantal ideals, there exists a monomial order for which taking initial ideals commutes with taking symbolic powers. To obtain these results, we develop the notion of <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-split filtrations and symbolic <span></span><math>\n <semantics>\n <mi>F</mi>\n <annotation>$F$</annotation>\n </semantics></math>-split ideals.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 2","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12969","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study when blowup algebras are F $F$ -split or strongly F $F$ -regular. Our main focus is on algebras given by symbolic and ordinary powers of ideals of minors of a generic matrix, a symmetric matrix, and a Hankel matrix. We also study ideals of Pfaffians of a skew-symmetric matrix. We use these results to obtain bounds on the degrees of the defining equations for these algebras. We also prove that the limit of the normalized regularity of the symbolic powers of these ideals exists and that their depth stabilizes. Finally, we show that, for determinantal ideals, there exists a monomial order for which taking initial ideals commutes with taking symbolic powers. To obtain these results, we develop the notion of F $F$ -split filtrations and symbolic F $F$ -split ideals.

素特征中行列式理想的吹胀代数
我们研究的是吹胀代数是 F $F$ 分裂的还是强 F $F$ 不规则的。我们的主要研究重点是一般矩阵、对称矩阵和汉克尔矩阵的小数理想的符号幂和普通幂所给出的数组。我们还研究了倾斜对称矩阵的普法因子的理想。我们利用这些结果获得了这些代数方程定义方程的度数边界。我们还证明了这些理想的符号幂的归一化正则极限是存在的,而且它们的深度是稳定的。最后,我们证明,对于行列式理想,存在一个取初始理想与取符号幂相乘的单项式阶。为了获得这些结果,我们提出了 F $F$ 分裂过滤和符号 F $F$ 分裂理想的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信