Alireza Behvar, Mahyar Sojoodi, Mohammad Elahinia, Carlo B. Niutta, Andrea Tridello, Davide S. Paolino, Meysam Haghshenas
{"title":"Very high cycle fatigue of fiber-reinforced polymer composites: Uniaxial ultrasonic fatigue","authors":"Alireza Behvar, Mahyar Sojoodi, Mohammad Elahinia, Carlo B. Niutta, Andrea Tridello, Davide S. Paolino, Meysam Haghshenas","doi":"10.1111/ffe.14365","DOIUrl":null,"url":null,"abstract":"<p>This review explores uniaxial ultrasonic fatigue (USF) testing as a common and dependable method for quantifying the extended fatigue life of fiber-reinforced polymer (FRP) composites. The objective is to explain the complexities governing the fatigue life behavior of FRPs, particularly in the realm of very high cycle fatigue (VHCF) where the number of loading cycles exceeds 10<sup>7</sup>. To this end, this review encompasses the analysis of VHCF behavior, including the derivation and interpretation of stress–life (<i>S</i>–<i>N</i>) data, the evaluation of various fatigue damage mechanisms (i.e., controlling mechanisms of crack initiation and propagation) exhibited in FRP composites, and a thorough investigation of the frequency-dependent effects on fatigue responses. Furthermore, this review tries to analyze the microscopic intricacies intrinsic to the VHCF failure of FRP composites, encompassing aspects such as fiber-matrix de-bonding, matrix cracking, and delamination, unveiling their modes and effects in a detailed manner. This review also underscores the pivotal integration of simulations, machine learning, and modeling techniques, emphasizing their crucial role in explaining both macroscopic and microscopic interactions governing the VHCF of FRPs.</p>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 9","pages":"3083-3115"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ffe.14365","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14365","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This review explores uniaxial ultrasonic fatigue (USF) testing as a common and dependable method for quantifying the extended fatigue life of fiber-reinforced polymer (FRP) composites. The objective is to explain the complexities governing the fatigue life behavior of FRPs, particularly in the realm of very high cycle fatigue (VHCF) where the number of loading cycles exceeds 107. To this end, this review encompasses the analysis of VHCF behavior, including the derivation and interpretation of stress–life (S–N) data, the evaluation of various fatigue damage mechanisms (i.e., controlling mechanisms of crack initiation and propagation) exhibited in FRP composites, and a thorough investigation of the frequency-dependent effects on fatigue responses. Furthermore, this review tries to analyze the microscopic intricacies intrinsic to the VHCF failure of FRP composites, encompassing aspects such as fiber-matrix de-bonding, matrix cracking, and delamination, unveiling their modes and effects in a detailed manner. This review also underscores the pivotal integration of simulations, machine learning, and modeling techniques, emphasizing their crucial role in explaining both macroscopic and microscopic interactions governing the VHCF of FRPs.
期刊介绍:
Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.