On functional successive minima

IF 0.8 3区 数学 Q2 MATHEMATICS
F. Amoroso, D. Masser, U. Zannier
{"title":"On functional successive minima","authors":"F. Amoroso,&nbsp;D. Masser,&nbsp;U. Zannier","doi":"10.1112/blms.13096","DOIUrl":null,"url":null,"abstract":"<p>In the classical Geometry of Numbers, the calculation of successive minima may be quite difficult, even in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <annotation>${\\bf R}^2$</annotation>\n </semantics></math> using the norm coming from a distance function associated to a set. In the literature, there seem to be hardly any analogues when <span></span><math>\n <semantics>\n <mi>R</mi>\n <annotation>${\\bf R}$</annotation>\n </semantics></math> is replaced by the algebraic closure of a function field in one variable and one uses a norm arising from the absolute height. Here, we calculate a one-parameter family of examples that naturally arose in our recent paper on bounded heights. We also comment on whether the minima are attained.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2727-2737"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13096","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the classical Geometry of Numbers, the calculation of successive minima may be quite difficult, even in R 2 ${\bf R}^2$ using the norm coming from a distance function associated to a set. In the literature, there seem to be hardly any analogues when R ${\bf R}$ is replaced by the algebraic closure of a function field in one variable and one uses a norm arising from the absolute height. Here, we calculate a one-parameter family of examples that naturally arose in our recent paper on bounded heights. We also comment on whether the minima are attained.

关于功能性连续最小值
在经典的《数的几何》中,即使在 R 2 ${\bf R}^2$ 中使用来自与集合相关的距离函数的规范,计算连续最小值也可能相当困难。在文献中,当 R ${\bf R}$ 被单变量函数场的代数闭包所代替,并使用由绝对高度产生的规范时,似乎几乎没有类似的方法。在这里,我们计算了我们最近关于有界高的论文中自然产生的一个参数族的例子。我们还对是否达到最小值进行了评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信