On a problem of Erdős and Graham about consecutive sums in strictly increasing sequences

IF 0.8 3区 数学 Q2 MATHEMATICS
Adrian Beker
{"title":"On a problem of Erdős and Graham about consecutive sums in strictly increasing sequences","authors":"Adrian Beker","doi":"10.1112/blms.13098","DOIUrl":null,"url":null,"abstract":"<p>We show the existence of a constant <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$c &amp;gt; 0$</annotation>\n </semantics></math> such that, for all positive integers <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>, there exist integers <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <msub>\n <mi>a</mi>\n <mn>1</mn>\n </msub>\n <mo>&lt;</mo>\n <mi>⋯</mi>\n <mo>&lt;</mo>\n <msub>\n <mi>a</mi>\n <mi>k</mi>\n </msub>\n <mo>≤</mo>\n <mi>n</mi>\n </mrow>\n <annotation>$1 \\leq a_1 &amp;lt; \\cdots &amp;lt; a_k \\leq n$</annotation>\n </semantics></math> such that there are at least <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n <msup>\n <mi>n</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$cn^2$</annotation>\n </semantics></math> distinct integers of the form <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mo>∑</mo>\n <mrow>\n <mi>i</mi>\n <mo>=</mo>\n <mi>u</mi>\n </mrow>\n <mi>v</mi>\n </msubsup>\n <msub>\n <mi>a</mi>\n <mi>i</mi>\n </msub>\n </mrow>\n <annotation>$\\sum _{i=u}^{v}a_i$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>u</mi>\n <mo>≤</mo>\n <mi>v</mi>\n <mo>≤</mo>\n <mi>k</mi>\n </mrow>\n <annotation>$1 \\leq u \\leq v \\leq k$</annotation>\n </semantics></math>. This answers a question of Erdős and Graham. We also prove a non-trivial upper bound on the maximum number of distinct integers of this form and address several open problems.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"56 8","pages":"2749-2759"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.13098","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show the existence of a constant c > 0 $c &gt; 0$ such that, for all positive integers n $n$ , there exist integers 1 a 1 < < a k n $1 \leq a_1 &lt; \cdots &lt; a_k \leq n$ such that there are at least c n 2 $cn^2$ distinct integers of the form i = u v a i $\sum _{i=u}^{v}a_i$ with 1 u v k $1 \leq u \leq v \leq k$ . This answers a question of Erdős and Graham. We also prove a non-trivial upper bound on the maximum number of distinct integers of this form and address several open problems.

论厄尔多斯和格雷厄姆关于严格递增序列中连续和的一个问题
我们证明了一个常数 c > 0 $c &gt; 0$ 的存在,即对于所有正整数 n $n$ ,存在整数 1 ≤ a 1 < ⋯ < a k ≤ n $1 \leq a_1 &lt; \cdots &lt; a_k \leq n$ ,这样至少有 c n 2 $cn^2$ 形式为 ∑ i = u v a i $sum _{i=u}^{v}a_i$ 的不同整数,其中 1 ≤ u ≤ v ≤ k $1 \leq u \leq v \leq k$ 。这回答了厄尔多斯和格雷厄姆的一个问题。我们还证明了关于这种形式的不同整数的最大数目的非难上限,并解决了几个悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信