Guoqing Gong, Shuyu Zhang, Baoni Li, Yufan Chen, Penghan Chen, Kai Wang, Thian Yew Gan, Deliang Chen, Junguo Liu
{"title":"Anomalous Water Vapor Circulation in an Extreme Drought Event of the Mid-Reaches of the Lancang-Mekong River Basin","authors":"Guoqing Gong, Shuyu Zhang, Baoni Li, Yufan Chen, Penghan Chen, Kai Wang, Thian Yew Gan, Deliang Chen, Junguo Liu","doi":"10.1029/2023EF004292","DOIUrl":null,"url":null,"abstract":"<p>The middle reaches of the Lancang-Mekong River Basin (M-LMRB) experienced a record-breaking drought event in 2019, resulting in significant economic losses of approximately 650 million dollars and affecting a population of 17 million. However, the anomalous circulation and transportation processes of water vapor, which may have played a crucial role in inducing the extreme drought, have not been fully studied. In this study, we analyze the water vapor circulation during the 2019 drought event using the land-atmosphere water balance and a backward trajectory model for moisture tracking. Our results indicate that the precipitation in the M-LMRB from May to October 2019 was only 71.9% of the long-term climatological mean (1959–2021). The low precipitation during this drought event can be attributed to less-than-normal external water vapor supply. Specifically, the backward trajectory model reveals a decrease in the amount of water vapor transported from the Indian Ocean, the Bay of Bengal, and the Pacific Ocean, which are the main moisture sources for precipitation in the region. Comparing the atmospheric circulation patterns in 2019 with the climatology, we identify anomalous anticyclone conditions in the Bay of Bengal, anomalous westerlies in the Northeast Indian Ocean, and an anomalous cyclone in the Western Pacific Ocean, collectively facilitating a stronger export of water vapor from the region. Therefore, the dynamic processes played a more significant role than thermodynamic processes in contributing to the 2019 extreme drought event.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EF004292","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023EF004292","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The middle reaches of the Lancang-Mekong River Basin (M-LMRB) experienced a record-breaking drought event in 2019, resulting in significant economic losses of approximately 650 million dollars and affecting a population of 17 million. However, the anomalous circulation and transportation processes of water vapor, which may have played a crucial role in inducing the extreme drought, have not been fully studied. In this study, we analyze the water vapor circulation during the 2019 drought event using the land-atmosphere water balance and a backward trajectory model for moisture tracking. Our results indicate that the precipitation in the M-LMRB from May to October 2019 was only 71.9% of the long-term climatological mean (1959–2021). The low precipitation during this drought event can be attributed to less-than-normal external water vapor supply. Specifically, the backward trajectory model reveals a decrease in the amount of water vapor transported from the Indian Ocean, the Bay of Bengal, and the Pacific Ocean, which are the main moisture sources for precipitation in the region. Comparing the atmospheric circulation patterns in 2019 with the climatology, we identify anomalous anticyclone conditions in the Bay of Bengal, anomalous westerlies in the Northeast Indian Ocean, and an anomalous cyclone in the Western Pacific Ocean, collectively facilitating a stronger export of water vapor from the region. Therefore, the dynamic processes played a more significant role than thermodynamic processes in contributing to the 2019 extreme drought event.
期刊介绍:
Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.