Signal to Noise Ratio and Spectral Sampling Constraints on Olivine Detection and Compositional Determination in the Intermediate Infrared Region: Applications in Planetary Sciences

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
S. A. Pérez-López, C. H. Kremer, J. F. Mustard
{"title":"Signal to Noise Ratio and Spectral Sampling Constraints on Olivine Detection and Compositional Determination in the Intermediate Infrared Region: Applications in Planetary Sciences","authors":"S. A. Pérez-López,&nbsp;C. H. Kremer,&nbsp;J. F. Mustard","doi":"10.1029/2023EA003476","DOIUrl":null,"url":null,"abstract":"<p>Spectral features of olivine across the intermediate infrared region (IMIR, 4–8 μm) shift systematically with iron-magnesium content, enabling determination of olivine composition. Previous IMIR studies have used laboratory data with signal-to-noise ratios (SNRs) and spectral resolutions potentially greater than those of data derived from planetary missions. Here we employ a feature fitting algorithm to quantitatively assess the influence of data quality on olivine detection and compositional interpretation from IMIR data of 29 spectra of pure olivine of synthetic, terrestrial, lunar, and Martian origins, as well as 5 spectra of lunar pyroclastic beads measured as bulk samples. First, we demonstrate the effectiveness of the feature fitting algorithm in the interpretation of IMIR olivine spectra, predicting olivine composition with an average error of 6.4 mol% forsterite across all test spectra using laboratory-quality data. We then extend this analysis to degraded test spectra with reduced SNRs and sampling rates and find a range of data qualities required to predict olivine composition within ±11 Mg# (molar Mg/[Mg + Fe] × 100) for the test spectra explored here. Spectra for the sample most relevant to lunar exploration, an Apollo 74002 drive tube consisting of microcrystalline olivine and glass-rich pyroclastics, required SNRs ≥ 200 for sampling rates ≤25 nm to predict composition within ±11 Mg# of the sample's true composition. Derived limits on SNRs and sampling rates will serve as valuable inputs for the development of IMIR spectrometers, enabling comprehensive knowledge of olivine composition on the lunar surface.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"11 8","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EA003476","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023EA003476","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Spectral features of olivine across the intermediate infrared region (IMIR, 4–8 μm) shift systematically with iron-magnesium content, enabling determination of olivine composition. Previous IMIR studies have used laboratory data with signal-to-noise ratios (SNRs) and spectral resolutions potentially greater than those of data derived from planetary missions. Here we employ a feature fitting algorithm to quantitatively assess the influence of data quality on olivine detection and compositional interpretation from IMIR data of 29 spectra of pure olivine of synthetic, terrestrial, lunar, and Martian origins, as well as 5 spectra of lunar pyroclastic beads measured as bulk samples. First, we demonstrate the effectiveness of the feature fitting algorithm in the interpretation of IMIR olivine spectra, predicting olivine composition with an average error of 6.4 mol% forsterite across all test spectra using laboratory-quality data. We then extend this analysis to degraded test spectra with reduced SNRs and sampling rates and find a range of data qualities required to predict olivine composition within ±11 Mg# (molar Mg/[Mg + Fe] × 100) for the test spectra explored here. Spectra for the sample most relevant to lunar exploration, an Apollo 74002 drive tube consisting of microcrystalline olivine and glass-rich pyroclastics, required SNRs ≥ 200 for sampling rates ≤25 nm to predict composition within ±11 Mg# of the sample's true composition. Derived limits on SNRs and sampling rates will serve as valuable inputs for the development of IMIR spectrometers, enabling comprehensive knowledge of olivine composition on the lunar surface.

Abstract Image

中红外区域橄榄石检测和成分测定的信噪比和光谱采样限制:行星科学中的应用
橄榄石在中红外区域(IMIR,4-8 μm)的光谱特征随铁镁含量的变化而系统移动,从而能够确定橄榄石的成分。以往的中红外研究使用的是实验室数据,其信噪比(SNR)和光谱分辨率可能高于行星任务所获得的数据。在此,我们采用一种特征拟合算法,从合成橄榄石、陆地橄榄石、月球橄榄石和火星橄榄石的 29 个纯橄榄石光谱的 IMIR 数据,以及作为块状样品测量的月球火成碎屑珠的 5 个光谱中,定量评估数据质量对橄榄石检测和成分解释的影响。首先,我们证明了特征拟合算法在解释 IMIR 橄榄石光谱方面的有效性,使用实验室质量的数据,在所有测试光谱中预测橄榄石成分的平均误差为 6.4 摩尔%的辉石。然后,我们将这一分析扩展到信噪比和采样率降低的降解测试光谱,并发现在本文探讨的测试光谱中,预测橄榄石成分所需的数据质量范围在 ±11 Mg#(摩尔镁/[镁+铁] × 100)以内。与月球探测最相关的样品--由微晶橄榄石和富含玻璃的火成岩组成的阿波罗 74002 驱动管--的光谱要求 SNR ≥ 200,采样率 ≤ 25 nm,以预测样品真实成分在 ±11 Mg# 以内。推导出的信噪比和采样率限制将成为开发 IMIR 光谱仪的宝贵输入,从而能够全面了解月球表面的橄榄石成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信