{"title":"Kempe equivalent list colorings revisited","authors":"Dibyayan Chakraborty, Carl Feghali, Reem Mahmoud","doi":"10.1002/jgt.23142","DOIUrl":null,"url":null,"abstract":"<p>A <i>Kempe chain</i> on colors <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n </mrow>\n <annotation> $a$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n </mrow>\n <annotation> $b$</annotation>\n </semantics></math> is a component of the subgraph induced by colors <span></span><math>\n <semantics>\n <mrow>\n <mi>a</mi>\n </mrow>\n <annotation> $a$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>b</mi>\n </mrow>\n <annotation> $b$</annotation>\n </semantics></math>. A <i>Kempe change</i> is the operation of interchanging the colors of some Kempe chains. For a list-assignment <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math> and an <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-coloring <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n </mrow>\n <annotation> $\\varphi $</annotation>\n </semantics></math>, a Kempe change is <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-<i>valid</i> for <span></span><math>\n <semantics>\n <mrow>\n <mi>φ</mi>\n </mrow>\n <annotation> $\\varphi $</annotation>\n </semantics></math> if performing the Kempe change yields another <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-coloring. Two <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-colorings are <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-<i>equivalent</i> if we can form one from the other by a sequence of <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-valid Kempe changes. A <i>degree-assignment</i> is a list-assignment <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math> such that <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mi>d</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $L(v)\\ge d(v)$</annotation>\n </semantics></math> for every <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n \n <mo>∈</mo>\n \n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $v\\in V(G)$</annotation>\n </semantics></math>. Cranston and Mahmoud asked: For which graphs <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and degree-assignment <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is it true that all the <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-colorings of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> are <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-equivalent? We prove that for every 4-connected graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> which is not complete and every degree-assignment <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, all <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-colorings of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> are <span></span><math>\n <semantics>\n <mrow>\n <mi>L</mi>\n </mrow>\n <annotation> $L$</annotation>\n </semantics></math>-equivalent.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23142","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A Kempe chain on colors and is a component of the subgraph induced by colors and . A Kempe change is the operation of interchanging the colors of some Kempe chains. For a list-assignment and an -coloring , a Kempe change is -valid for if performing the Kempe change yields another -coloring. Two -colorings are -equivalent if we can form one from the other by a sequence of -valid Kempe changes. A degree-assignment is a list-assignment such that for every . Cranston and Mahmoud asked: For which graphs and degree-assignment of is it true that all the -colorings of are -equivalent? We prove that for every 4-connected graph which is not complete and every degree-assignment of , all -colorings of are -equivalent.
颜色 a $a$ 和 b $b$ 上的 Kempe 链是颜色 a $a$ 和 b $b$ 诱导的子图的一个组成部分。Kempe 变化是交换某些 Kempe 链颜色的操作。对于一个列表分配 L $L$ 和一个 L $L$ 颜色 φ $\varphi $,如果进行 Kempe 更改能得到另一个 L $L$ 颜色,则 Kempe 更改对 φ $\varphi $ 是 L $L$ 有效的。如果我们可以通过一连串 L $L$ 有效的 Kempe 变换从另一个 L $L$ 着色中得到一个 L $L$ 着色,那么这两个 L $L$ 着色就是 L $L$ 等价的。度赋值是一个列表赋值 L $L$,对于每个 v∈ V ( G ) $v\in V(G)$ 来说,L ( v ) ≥ d ( v ) $L(v)\ge d(v)$ 。克兰斯顿和马哈茂德问对于哪些图 G $G$ 和 G $G$ 的度数赋值 L $L$ 来说,G $G$ 的所有 L $L$ -着色都是 L $L$ -等价的?我们证明,对于每一个不完整的四连图 G $G$ 和 G $G$ 的每一个度数分配 L $L$, G $G$ 的所有 L $L$ -着色都是 L $L$ -等价的。