{"title":"Recycling of Silicone Rubber from Composite Insulator with Pyrolysis Method","authors":"Ruiqi Shang;Liming Wang;Fanghui Yin;Masoud Farzaneh","doi":"10.17775/CSEEJPES.2022.05800","DOIUrl":null,"url":null,"abstract":"Composite insulators have been widely used in transmission lines. After being removed from transmission lines, their housing silicone material cannot degrade naturally. To tackle this problem, this paper proposes an effective method to recycle waste insulators by pyrolysis to obtain mullite \n<tex>$(\\mathbf{3}\\mathbf{Al}_{2}\\mathbf{O}_{3}\\cdot \\mathbf{2}\\mathbf{SiO}_{2})$</tex>\n with high purity and compact structure. The recycling process studied will not generate toxic products. The thermal degradation process of housing material is investigated by analyzing its degradation products including the gas and residues in detail. The experimental results indicate that the colorant agent Fe\n<inf>2</inf>\nO\n<inf>3</inf>\n inside the housing material is beneficial for the generation of mullite by decreasing the temperature of mullitization. Besides, since the transitional alumina generated by the dehydration of aluminum hydroxide (ATH) has a smaller diameter and can better dissolute into the silica phases, ATH is a better choice as the additional aluminum resource. By comparing the components, structure, and particle size of grains formed at different calcination temperatures, the proposed pyrolysis temperatures of the two stages are 1400°C and 1600°C, respectively.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 4","pages":"1787-1798"},"PeriodicalIF":6.9000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10520158","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10520158/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Composite insulators have been widely used in transmission lines. After being removed from transmission lines, their housing silicone material cannot degrade naturally. To tackle this problem, this paper proposes an effective method to recycle waste insulators by pyrolysis to obtain mullite
$(\mathbf{3}\mathbf{Al}_{2}\mathbf{O}_{3}\cdot \mathbf{2}\mathbf{SiO}_{2})$
with high purity and compact structure. The recycling process studied will not generate toxic products. The thermal degradation process of housing material is investigated by analyzing its degradation products including the gas and residues in detail. The experimental results indicate that the colorant agent Fe
2
O
3
inside the housing material is beneficial for the generation of mullite by decreasing the temperature of mullitization. Besides, since the transitional alumina generated by the dehydration of aluminum hydroxide (ATH) has a smaller diameter and can better dissolute into the silica phases, ATH is a better choice as the additional aluminum resource. By comparing the components, structure, and particle size of grains formed at different calcination temperatures, the proposed pyrolysis temperatures of the two stages are 1400°C and 1600°C, respectively.
期刊介绍:
The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.