Temperature-Stable Low-Power RF-to-DC Dickson Charge Pump Rectifiers for Battery-Free Sensing and IoT Systems

IF 2.3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiaoqiang Gu;Jorge Virgilio de Almeida;Simon Hemour;Roni Khazaka;Ke Wu
{"title":"Temperature-Stable Low-Power RF-to-DC Dickson Charge Pump Rectifiers for Battery-Free Sensing and IoT Systems","authors":"Xiaoqiang Gu;Jorge Virgilio de Almeida;Simon Hemour;Roni Khazaka;Ke Wu","doi":"10.1109/JRFID.2024.3423711","DOIUrl":null,"url":null,"abstract":"Temperature variation poses a significant challenge for battery-free sensors and Internet of Things (IoT) systems, mainly due to the absence of built-in temperature compensation modules. This work presents a strategy to identify Schottky diodes for low-power RF-to-dc Dickson charge pump (DCP) rectifiers to enhance temperature stability. Theoretical analysis pinpoints that performance degradation in dynamic temperatures results from the mismatch loss between diode nonlinear junction resistance and load resistance. The analytical method is implemented to synthesize the optimum number of stages and identify suitable Schottky diodes for low-power RF-to-dc DCP rectifiers. Experimental measurements demonstrate that the SMS7621-based 3-stage RF-to-dc DCP rectifier maintains a wide matched operating temperature range from \n<inline-formula> <tex-math>$- 32.5~^{\\circ }$ </tex-math></inline-formula>\nC to \n<inline-formula> <tex-math>$70~^{\\circ }$ </tex-math></inline-formula>\nC. Further experiments show that its dc output voltage remains above 3.2 V across a wide temperature range of \n<inline-formula> <tex-math>$- 40~^{\\circ }$ </tex-math></inline-formula>\nC to \n<inline-formula> <tex-math>$80~^{\\circ }$ </tex-math></inline-formula>\nC when the RF input is −8 dBm, which can drive a commercial wireless sensor board. This work aims to serve as a benchmark for developing reliable low-power RF-to-dc DCP rectifiers that meet various operating temperature requirements of battery-free IoT sensors.","PeriodicalId":73291,"journal":{"name":"IEEE journal of radio frequency identification","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal of radio frequency identification","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10585297/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Temperature variation poses a significant challenge for battery-free sensors and Internet of Things (IoT) systems, mainly due to the absence of built-in temperature compensation modules. This work presents a strategy to identify Schottky diodes for low-power RF-to-dc Dickson charge pump (DCP) rectifiers to enhance temperature stability. Theoretical analysis pinpoints that performance degradation in dynamic temperatures results from the mismatch loss between diode nonlinear junction resistance and load resistance. The analytical method is implemented to synthesize the optimum number of stages and identify suitable Schottky diodes for low-power RF-to-dc DCP rectifiers. Experimental measurements demonstrate that the SMS7621-based 3-stage RF-to-dc DCP rectifier maintains a wide matched operating temperature range from $- 32.5~^{\circ }$ C to $70~^{\circ }$ C. Further experiments show that its dc output voltage remains above 3.2 V across a wide temperature range of $- 40~^{\circ }$ C to $80~^{\circ }$ C when the RF input is −8 dBm, which can drive a commercial wireless sensor board. This work aims to serve as a benchmark for developing reliable low-power RF-to-dc DCP rectifiers that meet various operating temperature requirements of battery-free IoT sensors.
用于无电池传感和物联网系统的温度稳定型低功耗射频至直流 Dickson 充电泵整流器
温度变化给无电池传感器和物联网(IoT)系统带来了巨大挑战,主要原因是没有内置温度补偿模块。本研究提出了一种为低功率射频到直流迪克森电荷泵(DCP)整流器识别肖特基二极管的策略,以提高温度稳定性。理论分析指出,二极管非线性结电阻和负载电阻之间的不匹配损耗会导致动态温度下的性能下降。该分析方法用于合成最佳级数,并为低功率射频到直流 DCP 整流器确定合适的肖特基二极管。进一步的实验表明,当射频输入为 -8 dBm 时,其直流输出电压在 $- 40~^{\circ }$ C 到 $80~^{\circ }$ C 的宽温度范围内保持在 3.2 V 以上,可以驱动商用无线传感器板。这项工作旨在为开发可靠的低功耗射频-直流 DCP 整流器提供基准,以满足无电池物联网传感器的各种工作温度要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信