{"title":"A GaN MMIC Dual-Asymmetrical-Lange-Coupler-Based Load-Modulated Balanced Amplifier for Back-Off Efficiency Enhancement","authors":"Luqi Yu;Yucheng Yu;Gaojing Zhang;Peng Chen;Chao Yu","doi":"10.1109/LMWT.2024.3420946","DOIUrl":null,"url":null,"abstract":"In this letter, a dual-asymmetrical-Lange-coupler-based load-modulated balanced amplifier (DALC-LMBA) topology is proposed for back-off efficiency enhancement. An input asymmetrical Lange coupler (ALC) is used to sequentially turn on the balanced amplifiers (BAs) for power back-off efficiency enhancement, another output ALC is adopted to generate proper load modulation (LM) for all three transistors. To verify the proposed design approach, a 23–25 GHz DALC-LMBA was implemented in a 0.12-\n<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>\nm gallium nitride (GaN) process. It achieves 34–34.5 dBm saturated output power with 18%–20% power-added-efficiency (PAE) and 14%–18% 8-dB back-off PAE across the band. When excited by a 200-MHz 7.2-dB peak-to-average power ratio 5G new radio (NR) signal with digital predistortion, it achieves 14.4%–18% average PAE and better than −41 dBc adjacent channel leakage ratio (ACLR).","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"34 8","pages":"1031-1034"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10587293/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this letter, a dual-asymmetrical-Lange-coupler-based load-modulated balanced amplifier (DALC-LMBA) topology is proposed for back-off efficiency enhancement. An input asymmetrical Lange coupler (ALC) is used to sequentially turn on the balanced amplifiers (BAs) for power back-off efficiency enhancement, another output ALC is adopted to generate proper load modulation (LM) for all three transistors. To verify the proposed design approach, a 23–25 GHz DALC-LMBA was implemented in a 0.12-
$\mu $
m gallium nitride (GaN) process. It achieves 34–34.5 dBm saturated output power with 18%–20% power-added-efficiency (PAE) and 14%–18% 8-dB back-off PAE across the band. When excited by a 200-MHz 7.2-dB peak-to-average power ratio 5G new radio (NR) signal with digital predistortion, it achieves 14.4%–18% average PAE and better than −41 dBc adjacent channel leakage ratio (ACLR).