Generalized Rapid TFT Modeling (GRTM) Framework for Agile Device Modeling With Thin-Film Transistors

Longfan Li;Jun Li;Changyan Chen;Yuhang Zhang;Jian Zhao;Yongfu Li;Xiaojun Guo
{"title":"Generalized Rapid TFT Modeling (GRTM) Framework for Agile Device Modeling With Thin-Film Transistors","authors":"Longfan Li;Jun Li;Changyan Chen;Yuhang Zhang;Jian Zhao;Yongfu Li;Xiaojun Guo","doi":"10.1109/JFLEX.2024.3384934","DOIUrl":null,"url":null,"abstract":"This article introduces the generalized rapid thin-film-transistor (TFT) modeling (GRTM) framework, an innovative approach using deep learning (DL) techniques for efficient and accurate modeling and generation of Verilog-A code of TFT devices. Traditional TFT modeling methods, such as physics-based and lookup table (LUT)-based models, often involve complex, manual parameter tuning and struggle with generalizability across different device types. The GRTM framework streamlines the modeling process by leveraging DL algorithms to automatically learn from input datasets, significantly reducing human effort in parameter extraction and fitting. Thus, a new aspect of GRTM is its compatibility with commercial SPICE simulators, achieved by converting DL models into Verilog-A SPICE code. The framework’s efficacy is demonstrated through its application to low-temperature polysilicon (LTPS) TFT devices, showing a fourfold increase in accuracy and a substantial reduction in model development time compared with conventional physics-based models. The performance and features of the GRTM framework are compared with existing methods, highlighting its potential to revolutionize TFT device modeling.","PeriodicalId":100623,"journal":{"name":"IEEE Journal on Flexible Electronics","volume":"3 5","pages":"190-196"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Flexible Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10489963/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces the generalized rapid thin-film-transistor (TFT) modeling (GRTM) framework, an innovative approach using deep learning (DL) techniques for efficient and accurate modeling and generation of Verilog-A code of TFT devices. Traditional TFT modeling methods, such as physics-based and lookup table (LUT)-based models, often involve complex, manual parameter tuning and struggle with generalizability across different device types. The GRTM framework streamlines the modeling process by leveraging DL algorithms to automatically learn from input datasets, significantly reducing human effort in parameter extraction and fitting. Thus, a new aspect of GRTM is its compatibility with commercial SPICE simulators, achieved by converting DL models into Verilog-A SPICE code. The framework’s efficacy is demonstrated through its application to low-temperature polysilicon (LTPS) TFT devices, showing a fourfold increase in accuracy and a substantial reduction in model development time compared with conventional physics-based models. The performance and features of the GRTM framework are compared with existing methods, highlighting its potential to revolutionize TFT device modeling.
针对薄膜晶体管敏捷器件建模的通用快速 TFT 建模 (GRTM) 框架
本文介绍了通用快速薄膜晶体管(TFT)建模(GRTM)框架,这是一种利用深度学习(DL)技术对 TFT 器件进行高效、准确建模并生成 Verilog-A 代码的创新方法。传统的 TFT 建模方法,如基于物理的模型和基于查找表 (LUT) 的模型,通常涉及复杂的手动参数调整,并且难以在不同器件类型之间实现通用性。GRTM 框架利用 DL 算法自动学习输入数据集,大大减少了参数提取和拟合过程中的人工操作,从而简化了建模过程。因此,GRTM 的一个新方面是通过将 DL 模型转换为 Verilog-A SPICE 代码,实现了与商业 SPICE 模拟器的兼容性。该框架在低温多晶硅(LTPS)TFT 器件中的应用证明了它的功效,与传统的基于物理的模型相比,精度提高了四倍,模型开发时间大幅缩短。我们将 GRTM 框架的性能和特点与现有方法进行了比较,从而凸显了其彻底改变 TFT 器件建模的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信