Zhukovsky-Volterra top and quantisation ideals

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
A. Mikhailov , T. Skrypnyk
{"title":"Zhukovsky-Volterra top and quantisation ideals","authors":"A. Mikhailov ,&nbsp;T. Skrypnyk","doi":"10.1016/j.nuclphysb.2024.116648","DOIUrl":null,"url":null,"abstract":"<div><p>In this letter, we revisit the quantisation problem for a fundamental model of classical mechanics—the Zhukovsky-Volterra top. We have discovered a four-parametric pencil of compatible Poisson brackets, comprising two quadratic and two linear Poisson brackets. Using the quantisation ideal method, we have identified two distinct quantisations of the Zhukovsky-Volterra top. The first type corresponds to the universal enveloping algebras of <span><math><mi>s</mi><mi>o</mi><mo>(</mo><mn>3</mn><mo>)</mo></math></span>, leading to Lie-Poisson brackets in the classical limit. The second type can be regarded as a quantisation of the four-parametric inhomogeneous quadratic Poisson pencil. We discuss the relationships between the quantisations obtained in our paper, Sklyanin's quantisation of the Euler top, and Levin-Olshanetsky-Zotov's quantisation of the Zhukovsky-Volterra top.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1006 ","pages":"Article 116648"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0550321324002141/pdfft?md5=1a1e2dbaeee18d2f228b1cc5e75ab427&pid=1-s2.0-S0550321324002141-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324002141","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, we revisit the quantisation problem for a fundamental model of classical mechanics—the Zhukovsky-Volterra top. We have discovered a four-parametric pencil of compatible Poisson brackets, comprising two quadratic and two linear Poisson brackets. Using the quantisation ideal method, we have identified two distinct quantisations of the Zhukovsky-Volterra top. The first type corresponds to the universal enveloping algebras of so(3), leading to Lie-Poisson brackets in the classical limit. The second type can be regarded as a quantisation of the four-parametric inhomogeneous quadratic Poisson pencil. We discuss the relationships between the quantisations obtained in our paper, Sklyanin's quantisation of the Euler top, and Levin-Olshanetsky-Zotov's quantisation of the Zhukovsky-Volterra top.

朱可夫斯基-伏特拉顶和量化理想
在这封信中,我们重新探讨了经典力学的一个基本模型--朱可夫斯基-沃尔特拉顶的量子化问题。我们发现了兼容泊松括号的四参数铅笔,其中包括两个二次泊松括号和两个线性泊松括号。利用量子化理想方法,我们确定了朱可夫斯基-伏特拉顶的两种不同量子化。第一种类型对应于 so(3) 的普遍包络代数,导致经典极限中的李-泊松括号。第二种类型可视为四参数不均匀二次泊松铅笔的量子化。我们将讨论我们论文中得到的量子化、斯克里亚宁对欧拉顶的量子化以及列文-奥尔山茨基-佐托夫对朱可夫斯基-伏特拉顶的量子化之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信