Anouar Bahrouni , Hlel Missaoui , Vicenţiu D. Rădulescu
{"title":"Nodal solutions for the nonlinear Robin problem in Orlicz spaces","authors":"Anouar Bahrouni , Hlel Missaoui , Vicenţiu D. Rădulescu","doi":"10.1016/j.nonrwa.2024.104186","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we consider a non-linear Robin problem driven by the Orlicz <span><math><mi>g</mi></math></span>-Laplacian operator. Using variational technique combined with a suitable truncation and Morse theory (critical groups), we prove two multiplicity theorems with sign information for all the solutions. In the first theorem, we establish the existence of at least two non-trivial solutions with fixed sign. In the second, we prove the existence of at least three non-trivial solutions with sign information (one positive, one negative, and the other change sign) and order. The result of the nodal solution is new for the non-linear <span><math><mi>g</mi></math></span>-Laplacian problems with the Robin boundary condition.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001251","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we consider a non-linear Robin problem driven by the Orlicz -Laplacian operator. Using variational technique combined with a suitable truncation and Morse theory (critical groups), we prove two multiplicity theorems with sign information for all the solutions. In the first theorem, we establish the existence of at least two non-trivial solutions with fixed sign. In the second, we prove the existence of at least three non-trivial solutions with sign information (one positive, one negative, and the other change sign) and order. The result of the nodal solution is new for the non-linear -Laplacian problems with the Robin boundary condition.
在本文中,我们考虑了一个由 Orlicz g-Laplacian 算子驱动的非线性 Robin 问题。利用变分技术结合适当的截断和莫尔斯理论(临界群),我们证明了所有解的两个带有符号信息的多重性定理。在第一个定理中,我们确定了至少存在两个具有固定符号的非微观解。在第二个定理中,我们证明了至少存在三个具有符号信息(一个正,一个负,另一个改变符号)和阶次的非微分解。对于具有 Robin 边界条件的非线性 g-Laplacian 问题来说,节点解的结果是新的。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.