Experimental study on preparation of fly ash-based geopolymer blended with recycled calcium source

IF 8.6 2区 工程技术 Q1 ENERGY & FUELS
Deluan Feng, Dongyao Chen, Yang Yu, Shihua Liang
{"title":"Experimental study on preparation of fly ash-based geopolymer blended with recycled calcium source","authors":"Deluan Feng,&nbsp;Dongyao Chen,&nbsp;Yang Yu,&nbsp;Shihua Liang","doi":"10.1016/j.susmat.2024.e01078","DOIUrl":null,"url":null,"abstract":"<div><p>A large amount of waste eggshells raises environmental issues. This study uses eggshells as recycled calcium source to synthesize fly ash and eggshell geopolymer (FAEG). The effects of eggshell content, liquid-solid ratio, NaOH/Na<sub>2</sub>SiO<sub>3</sub> ratio, and NaOH solution concentration on the strength of the FAEG were evaluated by unconfined compressive strength (UCS) test. The geopolymerization products and microstructure characteristics of the FAEG were analyzed by XRD, FTIR, TGA, and SEM test. The results show that eggshells acted as recycled calcium sources are capable of significantly enhancing the UCS of the FAEG. The optimal content of eggshells is 15%. The NaOH/Na<sub>2</sub>SiO<sub>3</sub> ratio has a significant effect on the UCS of the FAEG, while the influence of liquid-solid ratio and NaOH concentration is slight. The optimal NaOH/Na<sub>2</sub>SiO<sub>3</sub> ratio is 50:50 and the liquid-solid ratio is recommended to be 0.55. Eggshells take part in the geopolymerization by acting as a precipitating and seeding element in the reaction and favoring the generation of the geopolymeric gels in the FAEG.</p></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"41 ","pages":"Article e01078"},"PeriodicalIF":8.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993724002586","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

A large amount of waste eggshells raises environmental issues. This study uses eggshells as recycled calcium source to synthesize fly ash and eggshell geopolymer (FAEG). The effects of eggshell content, liquid-solid ratio, NaOH/Na2SiO3 ratio, and NaOH solution concentration on the strength of the FAEG were evaluated by unconfined compressive strength (UCS) test. The geopolymerization products and microstructure characteristics of the FAEG were analyzed by XRD, FTIR, TGA, and SEM test. The results show that eggshells acted as recycled calcium sources are capable of significantly enhancing the UCS of the FAEG. The optimal content of eggshells is 15%. The NaOH/Na2SiO3 ratio has a significant effect on the UCS of the FAEG, while the influence of liquid-solid ratio and NaOH concentration is slight. The optimal NaOH/Na2SiO3 ratio is 50:50 and the liquid-solid ratio is recommended to be 0.55. Eggshells take part in the geopolymerization by acting as a precipitating and seeding element in the reaction and favoring the generation of the geopolymeric gels in the FAEG.

粉煤灰基土工聚合物与再生钙源混合制备实验研究
大量废弃蛋壳引发了环境问题。本研究利用蛋壳作为再生钙源,合成粉煤灰和蛋壳土工聚合物(FAEG)。通过无侧限抗压强度(UCS)测试评估了蛋壳含量、液固比、NaOH/Na2SiO3 比和 NaOH 溶液浓度对 FAEG 强度的影响。通过 XRD、FTIR、TGA 和 SEM 测试分析了 FAEG 的土聚合产物和微观结构特征。结果表明,蛋壳作为再生钙源能够显著提高 FAEG 的 UCS。蛋壳的最佳含量为 15%。NaOH/Na2SiO3 的比例对 FAEG 的 UCS 有显著影响,而液固比和 NaOH 浓度的影响较小。最佳的 NaOH/Na2SiO3 比例为 50:50,液固比建议为 0.55。蛋壳在土工聚合反应中起沉淀和播种作用,有利于在 FAEG 中生成土工聚合凝胶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信