Fast permeability measurement for tight reservoir cores using only initial data of the one chamber pressure pulse decay test

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Fast permeability measurement for tight reservoir cores using only initial data of the one chamber pressure pulse decay test","authors":"","doi":"10.1016/j.jmps.2024.105805","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a mathematical model for fast determination of the permeabilities of tight rocks using measurements taken from the initial period of the One Chamber Pressure Pulse Decay (OC-PPD) test is presented. The model applies to measurements taken both before and after the pressure pulse front has reached the downstream end of the specimen. The analytical solutions for the pressure decay in the upstream chamber are derived based on a parabolic arc approximation of pore pressure distribution along the test specimen. This approximation allows converting the initial–boundary value problem of fluid diffusion in the specimen, governed by partial differential equations, to a system of ordinary differential equations that can be easily solved by explicit formulae. Thus, an explicit formula for the pressure decay rate is obtained, which enables inverse analysis of the initial experimental data to estimate the rock permeability. The proposed method expedites the pulse decay test as it does not require the system to reach equilibrium. The method is validated with three sets of experimental data of the OC-PPD test using helium as the diffusing fluid, for which the relative error of the permeability is found to be less than 6%. This method is particularly useful if the equilibrium time of the pulse decay test for rock specimens with permeabilities in the range of nano-Darcy takes hours or days.</p></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624002710","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a mathematical model for fast determination of the permeabilities of tight rocks using measurements taken from the initial period of the One Chamber Pressure Pulse Decay (OC-PPD) test is presented. The model applies to measurements taken both before and after the pressure pulse front has reached the downstream end of the specimen. The analytical solutions for the pressure decay in the upstream chamber are derived based on a parabolic arc approximation of pore pressure distribution along the test specimen. This approximation allows converting the initial–boundary value problem of fluid diffusion in the specimen, governed by partial differential equations, to a system of ordinary differential equations that can be easily solved by explicit formulae. Thus, an explicit formula for the pressure decay rate is obtained, which enables inverse analysis of the initial experimental data to estimate the rock permeability. The proposed method expedites the pulse decay test as it does not require the system to reach equilibrium. The method is validated with three sets of experimental data of the OC-PPD test using helium as the diffusing fluid, for which the relative error of the permeability is found to be less than 6%. This method is particularly useful if the equilibrium time of the pulse decay test for rock specimens with permeabilities in the range of nano-Darcy takes hours or days.

仅利用单室压力脉冲衰减试验的初始数据,快速测量致密储层岩心的渗透率
本研究提出了一个数学模型,用于利用单室压力脉冲衰减(OC-PPD)试验初期的测量数据快速测定致密岩石的渗透率。该模型适用于压力脉冲前沿到达试样下游端之前和之后的测量。上游腔室压力衰减的解析解是基于沿试样孔隙压力分布的抛物线弧近似值得出的。这种近似方法可以将试样中流体扩散的初始边界值问题(由偏微分方程控制)转换为常微分方程系统,并通过显式公式轻松求解。因此,可以得到压力衰减率的显式公式,从而对初始实验数据进行反分析,估算岩石渗透率。所提出的方法不需要系统达到平衡,因此加快了脉冲衰减测试的速度。该方法用三组以氦气为扩散流体的 OC-PPD 试验数据进行了验证,发现渗透率的相对误差小于 6%。如果渗透率在纳达西范围内的岩石试样的脉冲衰减测试的平衡时间需要数小时或数天,这种方法就特别有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信