{"title":"Extremal spectral radius of nonregular graphs with prescribed maximum degree","authors":"Lele Liu","doi":"10.1016/j.jctb.2024.07.007","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>G</em> be a graph attaining the maximum spectral radius among all connected nonregular graphs of order <em>n</em> with maximum degree Δ. Let <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the spectral radius of <em>G</em>. A nice conjecture due to Liu et al. (2007) <span><span>[19]</span></span> asserts that<span><span><span><math><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>=</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span></span></span> for each fixed Δ. Concerning an important structural property of the extremal graphs <em>G</em>, Liu and Li (2008) <span><span>[17]</span></span> put forward another conjecture which states that <em>G</em> has exactly one vertex of degree strictly less than Δ. In this paper, we make progress on the two conjectures. To be precise, we disprove the first conjecture for all <span><math><mi>Δ</mi><mo>≥</mo><mn>3</mn></math></span> by showing that<span><span><span><math><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mspace></mspace><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>≤</mo><mfrac><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo></math></span></span></span> For small Δ, we determine the precise asymptotic behavior of <span><math><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In particular, we show that <span><math><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>/</mo><mo>(</mo><mi>Δ</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn></math></span> if <span><math><mi>Δ</mi><mo>=</mo><mn>3</mn></math></span>; and <span><math><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo></mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>/</mo><mo>(</mo><mi>Δ</mi><mo>−</mo><mn>2</mn><mo>)</mo><mo>=</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>2</mn></math></span> if <span><math><mi>Δ</mi><mo>=</mo><mn>4</mn></math></span>. We also confirm the second conjecture for <span><math><mi>Δ</mi><mo>=</mo><mn>3</mn></math></span> and <span><math><mi>Δ</mi><mo>=</mo><mn>4</mn></math></span> by determining the precise structure of extremal graphs. Furthermore, we show that the extremal graphs for <span><math><mi>Δ</mi><mo>∈</mo><mo>{</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>}</mo></math></span> must have a path-like structure built from specific blocks.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 430-479"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000662","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be a graph attaining the maximum spectral radius among all connected nonregular graphs of order n with maximum degree Δ. Let be the spectral radius of G. A nice conjecture due to Liu et al. (2007) [19] asserts that for each fixed Δ. Concerning an important structural property of the extremal graphs G, Liu and Li (2008) [17] put forward another conjecture which states that G has exactly one vertex of degree strictly less than Δ. In this paper, we make progress on the two conjectures. To be precise, we disprove the first conjecture for all by showing that For small Δ, we determine the precise asymptotic behavior of . In particular, we show that if ; and if . We also confirm the second conjecture for and by determining the precise structure of extremal graphs. Furthermore, we show that the extremal graphs for must have a path-like structure built from specific blocks.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.