Extremal spectral radius of nonregular graphs with prescribed maximum degree

IF 1.2 1区 数学 Q1 MATHEMATICS
Lele Liu
{"title":"Extremal spectral radius of nonregular graphs with prescribed maximum degree","authors":"Lele Liu","doi":"10.1016/j.jctb.2024.07.007","DOIUrl":null,"url":null,"abstract":"<div><p>Let <em>G</em> be a graph attaining the maximum spectral radius among all connected nonregular graphs of order <em>n</em> with maximum degree Δ. Let <span><math><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the spectral radius of <em>G</em>. A nice conjecture due to Liu et al. (2007) <span><span>[19]</span></span> asserts that<span><span><span><math><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo>⁡</mo><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>=</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span></span></span> for each fixed Δ. Concerning an important structural property of the extremal graphs <em>G</em>, Liu and Li (2008) <span><span>[17]</span></span> put forward another conjecture which states that <em>G</em> has exactly one vertex of degree strictly less than Δ. In this paper, we make progress on the two conjectures. To be precise, we disprove the first conjecture for all <span><math><mi>Δ</mi><mo>≥</mo><mn>3</mn></math></span> by showing that<span><span><span><math><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mspace></mspace><mfrac><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>Δ</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>≤</mo><mfrac><mrow><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>2</mn></mrow></mfrac><mo>.</mo></math></span></span></span> For small Δ, we determine the precise asymptotic behavior of <span><math><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. In particular, we show that <span><math><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo>⁡</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>/</mo><mo>(</mo><mi>Δ</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>=</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>4</mn></math></span> if <span><math><mi>Δ</mi><mo>=</mo><mn>3</mn></math></span>; and <span><math><munder><mi>lim</mi><mrow><mi>n</mi><mo>→</mo><mo>∞</mo></mrow></munder><mo>⁡</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>Δ</mi><mo>−</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo><mo>)</mo><mo>/</mo><mo>(</mo><mi>Δ</mi><mo>−</mo><mn>2</mn><mo>)</mo><mo>=</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>2</mn></math></span> if <span><math><mi>Δ</mi><mo>=</mo><mn>4</mn></math></span>. We also confirm the second conjecture for <span><math><mi>Δ</mi><mo>=</mo><mn>3</mn></math></span> and <span><math><mi>Δ</mi><mo>=</mo><mn>4</mn></math></span> by determining the precise structure of extremal graphs. Furthermore, we show that the extremal graphs for <span><math><mi>Δ</mi><mo>∈</mo><mo>{</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>}</mo></math></span> must have a path-like structure built from specific blocks.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"169 ","pages":"Pages 430-479"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000662","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a graph attaining the maximum spectral radius among all connected nonregular graphs of order n with maximum degree Δ. Let λ1(G) be the spectral radius of G. A nice conjecture due to Liu et al. (2007) [19] asserts thatlimnn2(Δλ1(G))Δ1=π2 for each fixed Δ. Concerning an important structural property of the extremal graphs G, Liu and Li (2008) [17] put forward another conjecture which states that G has exactly one vertex of degree strictly less than Δ. In this paper, we make progress on the two conjectures. To be precise, we disprove the first conjecture for all Δ3 by showing thatlimsupnn2(Δλ1(G))Δ1π22. For small Δ, we determine the precise asymptotic behavior of Δλ1(G). In particular, we show that limnn2(Δλ1(G))/(Δ1)=π2/4 if Δ=3; and limnn2(Δλ1(G))/(Δ2)=π2/2 if Δ=4. We also confirm the second conjecture for Δ=3 and Δ=4 by determining the precise structure of extremal graphs. Furthermore, we show that the extremal graphs for Δ{3,4} must have a path-like structure built from specific blocks.

具有规定最大度的非规则图形的极谱半径
设 G 是最大阶数为 Δ 的所有 n 阶连通非规则图中光谱半径最大的图。Liu 等人(2007)[19] 提出了一个很好的猜想,即对于每个固定的 Δ,limn→∞n2(Δ-λ1(G))Δ-1=π2。关于极值图 G 的一个重要结构性质,刘和李(2008)[17] 提出了另一个猜想,即 G 恰好有一个顶点的度严格小于 Δ。确切地说,我们通过证明limsupn→∞n2(Δ-λ1(G))Δ-1≤π22,推翻了所有Δ≥3 的第一个猜想。对于小 Δ,我们确定了 Δ-λ1(G) 的精确渐近行为。特别是,我们证明了如果Δ=3,limn→∞n2(Δ-λ1(G))/(Δ-1)=π2/4;如果Δ=4,limn→∞n2(Δ-λ1(G))/(Δ-2)=π2/2。我们还通过确定极值图的精确结构,证实了 Δ=3 和 Δ=4 时的第二个猜想。此外,我们还证明了Δ∈{3,4} 的极值图必须具有由特定图块构建的类似路径的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信